Produktion – Technologie und Management

1. Auflage
Die beigefügte CD enthält die Bilder des Buches und ein Repetitorium.

Bearbeitet von Lehrern und Ingenieuren (s. Rückseite)
Lektorat: Prof. Dr.-Ing. Dietmar Schmid, Essingen

VERLAG EUROPA-LEHRMITTEL • Nourney, Vollmer GmbH & Co. KG,
Düsselberger Straße 23 • 42781 Haan-Gruiten

Europa-Nr.: 19127
Die Autoren des Buches:

Schmid, Dietmar, Dr.-Ing., Prof., Essingen, Werkzeugmaschinen, Roboter, Arbeitsschutz, PLM sowie Einzelbeiträge in allen Kapiteln

Kirchner, Arndt, Dipl.-Ing. (FH), Oberlenningen, Montagetaktung, Qualitäts- und Umweltmanagement

Pflug, Alexander, Dipl.-Ing. Studienrat, Schwäbisch-Gmünd, CNC-Programmierung, Prozess-, Projekt-, Personalmanagement, Druckguss, Glas und Keramik mit Projekten

Koke, Thomas, Dipl.-Ing., Aalen, Serienprodukte, Logistik, Fördertechnik

Kaufmann, Hans, Dipl.-Ing.(FH), Studiendirektor, Aalen, Instandhaltung, Energie- und IT-Management, Automobilindustrie mit Projekt Motorenfertigung

Dambacher, Michael, Dipl.-Ing., Studiendirektor, Hüttlingen, Fertigungsverfahren, Werkstoffe, Werkzeugindustrieprojekt

Konold, Peter, Dipl.-Ing., Prof., Geislingen, Montagetaktik, Kunststoff-Verpackungsprojekt

Kümmerer, Rolf, Dr.-Ing., Prof., Aalen, Konstruktionstechnik

Schlüter, Michael, Geschäftsführer, Schladen, Messebauprojekt

Lohmann, Arnd, Textilbetriebswirt BTE, Nagold, Jeansprojekt

Lektorat und Leitung des Arbeitskreises: Prof. Dr.-Ing. Dietmar Schmid, Essingen

Bildbearbeitung: Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern Grafische Produktionen Jürgen Neumann, 97222 Rimpar

1. Auflage 2013
Druck 5 4 3 2 1
Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Korrektur von Druckfehlern unverändert sind.

ISBN 978-3-8085-1912-7

Umschlaggestaltung: Grafische Produktionen Jürgen Neumann, 97222 Rimpar; Grafik & Sound, 50679 Köln
Satz: Grafische Produktionen Jürgen Neumann, 97222 Rimpar
Druck: B.O.S.S Druck und Medien GmbH, 47574 Goch
Vorwort

Gegliedert ist das Buch in die Kapitel:

- Einführung in die Produktionsstechnologie,
- Produktentwicklung und Prozessplanung,
- In Serien produzieren,
- Metalltechnik,
- Logistik,
- Robuste Produktion,
- Managementsysteme,
- Branchen und Projekte.

Hinweise und Verbesserungsvorschläge können dem Verlag und damit den Autoren unter der E-Mail Adresse lektorat@europa-lehrmittel.de gerne mitgeteilt werden.

Februar 2013

Dietmar Schmid
Inhaltsverzeichnis

1 Einführung 9

1.1 Produktionsfaktoren ... 10
1.2 Ziel der Produktion ... 11
1.3 Innovation .. 12
1.4 Produktionsarten .. 13
1.4.1 Werkbankfertigung ... 13
1.4.2 Baustellenfertigung 13
1.4.3 Werkstattfertigung ... 14
1.4.4 Lineare Produktlinien 16
1.4.5 Segmentierung der Fließproduktion 17
1.4.6 Fließfertigung .. 18
1.4.7 Wertstromdesign .. 16
1.5 Allgemeine Gestaltungsprinzipien 24
1.5.1 Stücklisten ... 71
1.5.2 Lean Production .. 25
1.5.2.1 Lean Production: Fertigung 25
1.5.2.2 Lean Production: Entwicklung 26
1.5.2.3 Lean Production: Konstruktion 27
1.5.3 Kanban ... 28
1.5.4 Kontinuierlicher Verbesserungsprozess 29
1.5.5 Kaizen ... 31
1.5.6 Toyota-Produktions-System (TPS) 33
1.5.7 Wertstromdesign .. 36
1.6 Die Gliederung der Produktionsprozesse 22
2 Produktentwicklung und Prozessplanung 37
2.1 Portfolio-Management ... 37
2.2 Konstruktion .. 39
2.2.1 Analyse und Aufgabenstellung 40
2.2.1.1 Anforderungsliste 40
2.2.2 Problemkern, Gesamtfunktion 42
2.2.2.1 Methoden der Ideenfindung 43
2.2.2.2 Einzelne Methoden 44
2.2.3 Bewertung und Auswahl 49
2.2.3.1 Bewertungskriterien 57
2.2.3.2 Bewertungsergebnisse 57
2.2.4 Darstellung des Problemkerns 42
2.2.5 Systematische Lösungs suche 43
2.2.6 Methoden der Ideenfindung 43
2.2.7 Methoden der Ideenfindung 44
2.3 Konstruktionswerkstoffe 60
2.3.1 Allgemeines .. 60
2.3.2 Einteilung der Werkstoffe 61
2.3.3 Werkstoffe für den Leichtbau 62
2.3.4 Praktische Werkstoffwahl 63
2.4 Kostengerechte Konstruktion 64
2.4.1 Allgemeines .. 64
2.4.2 Kostenbeträge .. 65
2.4.3 Relativkosten ... 66
2.4.4 Konstruktionskosten 68
2.4.5 Materialkosten ... 68
2.4.6 Fertigungskosten .. 69
2.5 Von der Konstruktion zur Fertigung 70
2.5.1 Stücklisten und Erzeugnisgliederung 71
2.5.1.1 Stücklisten .. 71
2.5.2 Erzeugnisstrukturierung 74
2.5.3 Teilleverwendungsnachweis 75
2.5.4 Sachmerkmale und Relationsmerkmale 77
3 In Serie produzieren 92
3.1 Ziele und Ansprüche ... 92
3.1.1 Einführung ... 93
3.1.2 Serienfreundliches Produkt 95
3.1.3 Autonome Produktgestaltung 96
3.1.4 Serienfreundliche Konstruktion 98
3.1.5 Demontagefreundliche Konstruktion 103
3.2 Montageplanung .. 104
3.2.1 Aufgabenstellung ... 104
3.2.2 Grobplanung ... 106
3.2.3 Feinplanung ... 115
3.2.4 Grundformen der Arbeitsbewältigung 118
3.2.4.1 Arbeitssteilung (Arbeitsteilung) 118
3.2.4.2 Mengenteilung ... 119
3.2.4.3 Baugruppenteilung und Variantenteilung 120
3.2.4.4 Verkettung als Teil der Arbeitserleichterung 121
3.2.5 Grundformen von Montagesystemen 123
3.2.5.1 Manuelle Montagesysteme ohne automatisierten Werkstück-Umlauf .. 125
3.2.5.2 Manuelle Montagesysteme mit automatisiertem Werkstück-Umlauf .. 126
3.2.5.3 Automatische Montagesysteme 127
3.2.6 Mensch-Maschine-Kooperation 129
3.3 Komplexe Serienprodukte, Beispiel: Automobil 131
3.3.1 Einführung und Allgemeines 131
3.3.2 Serienplanung .. 132
3.3.2.1 Anlaufstrategie ... 134
3.3.2.2 Anlaufprozessplanung 135
3.3.2.3 Organisationssysteme 136
3.3.2.4 Primärorganisationen 136
3.3.2.5 Formen der Anlauforganisation 137
3.3.3 Lieferantenmanagement 139
3.3.4 Aufgaben und Strukturierung 139
3.3.4.1 Der Prozess des Lieferantenmanagements 141
3.4 Beispiel: Motorenmontage planen und takten 144
3.4.1 Die Taktzeit ... 144
3.4.2 Planung der Montagelinie 145
3.4.3 Anforderungen an die Automatikstationen 145
Inhaltsverzeichnis

3.4.4 Handarbeitsplätze, Stand-by-Arbeitsplätze und Nacharbeitsplätze 146
3.4.5 Erste Ermittlung der Montagezeit .. 148
3.4.6 Methods-Time Measurements (MTM) .. 148
3.4.7 Das TiCon-Modul ... 149
3.4.8 Wertschöpfung und Verschwendung .. 151
3.4.9 Die Gesamtmontagezeit .. 151
3.4.10 Erste Taktung ... 152
3.4.11 Takt-Testung ... 153
3.4.12 Betriebsvereinbarung zur Taktzeitauslastung 153
3.4.13 Das Springerkonzept .. 154
3.4.14 Die Serientaktung .. 154

3.5 Reifegradsicherung ... 155
3.5.1 Einführung ... 155
3.5.2 Die Risiken .. 156
3.5.2.1 Produkt- und Produktionsrisiken .. 156
3.5.2.2 Terminrisiken .. 156
3.5.2.3 Lieferantenrisiken .. 156
3.5.2.4 Lastenheft und Pflichtenheft .. 157
3.5.2.5 Kostenrisiken .. 157
3.5.2.6 Risikokosten entsprechend Pflichtenheft 157
3.5.2.7 Mechanische Risiken .. 158

4.0 Metalltechnik ... 159

4.1 Fertigungsverfahren .. 159
4.1.1 Gliederung der Fertigungsverfahren .. 159
4.1.2 Die Auswahl eines Fertigungsverfahren .. 159
4.1.3 Die Optimierung von Fertigungsabläufen 162
4.1.4 Spanende Fertigung und Feinguss .. 162
4.1.5 Präzisionsschmieden und Sintern .. 162
4.1.6 Rundkneten und spanende Fertigung .. 163

4.2 Umformen ... 164
4.2.1 Umformen mit formgebendem Werkzeug aus dem flüssigen Zustand, Gießen .. 164
4.2.2 Der prinzipielle Verfahrensablauf beim Gießen 165
4.2.3 Erstarrungsvorgänge ... 165
4.2.4 Giessverfahren ... 166
4.2.5 Giessen in verlorenen Formen ... 166
4.2.6 Giessen in verlorenen Formen mit Dauermodellen 167
4.2.7 Giessen mit Dauerformen und ohne Modell 169
4.2.8 Umformen mit formgebendem Werkzeug aus dem breiigen Zustand .. 171
4.2.9 Thixoformen ... 171
4.2.10 Umformen mit formgebendem Werkzeug aus dem pulverförmigen Zustand .. 172
4.2.11 Pulvermetallurgie .. 172
4.2.12 Pulverschmieden ... 173
4.2.13 Metallpulverspritzgießen .. 174

4.3 Additive Fertigung .. 175
4.3.1 Gliederung ... 175
4.3.2 Rapid Prototyping-Verfahren ... 176
4.3.3 Stereolithographie .. 176
4.3.4 Solid Ground Curing .. 176
4.3.5 Selective Laser Sintering (SLS) ... 177
4.3.6 3D-Printing ... 177

4.4 Umformtechnik .. 179
4.4.1 Umformverfahren .. 179
4.4.2 Druckumformen ... 181
4.4.2.1 Walzen .. 181
4.4.2.2 Schmieden ... 182
4.4.2.3 Fließpressen .. 183
4.4.2.4 Strangpressen .. 184
4.4.2.5 Gewindeformen ... 184
4.4.2.6 Zugdruckumformen .. 184
4.4.2.7 Durchziehen .. 185
4.4.2.8 Tiefziehen ... 185
4.4.2.9 Drücken ... 186
4.4.2.10 Zugumformen ... 186
4.4.2.11 Innenhochdruckumformen (IHU) ... 186
4.4.2.12 Biegeumformen ... 187

4.5 Zerspanentechnik .. 188
4.5.1 Zerspanungsprozesse ... 188
4.5.2 Bohren .. 189
4.5.3 Drehen .. 189
4.5.4 Fräsen .. 190
4.5.5 Schleifen ... 191
4.5.6 Honen und Läppen ... 191
4.5.7 Hartzerspanung .. 192
4.5.8 Ultraschallzerspanung ... 192
4.5.9 Trockenzerspanung ... 193
4.5.10 Minimalmengenschmierung ... 193
4.5.11 Hochgeschwindigkeitsbearbeitung ... 194

4.6 Abtragende Verfahren .. 195
4.6.1 Einteilung ... 195
4.6.2 Thermisches Abtragen ... 195
4.6.3 Autogenes Brennschneiden .. 195
4.6.4 Plasmaschneiden ... 195
4.6.5 Laserstrahlschneiden ... 197
4.6.6 Funkenerosives Abtragen (EDM) .. 198
4.6.7 Erosives Abtragen durch Flüssigkeit ... 199
4.6.8 Chemisches Abtragen ... 199
4.6.9 Elektrochemisches Abtragen (ECM) .. 199
4.6.10 Verfahrensvergleich ... 200

4.7 Blechbearbeitung .. 201
4.7.1 Stanzen .. 201
4.7.2 Scherschneiden .. 201
4.7.3 Nibeln .. 202
4.7.4 Feinschneiden .. 202
4.7.5 Folgeschneiden .. 202

4.8 Thermisches Fügen .. 203
4.8.1 Pressschweißen .. 203
4.8.2 Schmelz-Verbindungsschweißen ... 206
4.8.3 Lötverbindungen ... 209
4.8.4 Verfahrensvergleich ... 210

4.9 Beschichtungstechnik metallischer Oberflächen 211
4.9.1 Hochgeschwindigkeitsflammspritzten 211
4.9.2 Lichtbogenspritzten ... 211
4.9.3 Flammpritzten ... 212
4.9.4 Beschichten von Schneidplatten ... 212
4.9.5 Auftragsschweißen .. 212
4.9.6 Feuerverzinken ... 212
4.9.7 Galvanisieren .. 212
<table>
<thead>
<tr>
<th>Inhaltsteil</th>
<th>Unterpunkt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Der Mensch ist das Maß</td>
<td>440</td>
</tr>
<tr>
<td>7.2</td>
<td>IT-Management</td>
<td>490</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Einführung</td>
<td>491</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Vorschriften und Gesetze</td>
<td>491</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Strukturierung</td>
<td>494</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Sicher Kommunikation</td>
<td>497</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Gefährdung durch Missbräuche</td>
<td>498</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Serverraum</td>
<td>498</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Sabotage</td>
<td>498</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Diebstahl</td>
<td>499</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Datensicherung</td>
<td>500</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Veränderungen von Dateien</td>
<td>501</td>
</tr>
<tr>
<td>7.2.11</td>
<td>Sicherheitsrisiken bei WLAN</td>
<td>502</td>
</tr>
<tr>
<td>7.2.12</td>
<td>Passwörter</td>
<td>503</td>
</tr>
<tr>
<td>7.2.13</td>
<td>Gefährdungen durch technisches Versagen</td>
<td>504</td>
</tr>
<tr>
<td>7.2.14</td>
<td>Schadsoftware</td>
<td>505</td>
</tr>
<tr>
<td>7.3</td>
<td>Energie- und Lastverwaltung</td>
<td>484</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Einführung</td>
<td>491</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Gesamtstruktur</td>
<td>484</td>
</tr>
<tr>
<td>7.3.3</td>
<td>DIN EN 16001</td>
<td>484</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Energiebilanz</td>
<td>485</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Energieverwaltung</td>
<td>485</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Lastverwaltung</td>
<td>488</td>
</tr>
<tr>
<td>7.4</td>
<td>Energieverwaltung und Lastverwaltung</td>
<td>484</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Einführung</td>
<td>491</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Projektstart</td>
<td>498</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Projektende</td>
<td>497</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Instrumente des Projektmanagements</td>
<td>411</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Planungsinstrumente</td>
<td>412</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Projektmanagement</td>
<td>416</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Planungsmethoden</td>
<td>416</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Organisationsmethoden</td>
<td>418</td>
</tr>
<tr>
<td>7.4.9</td>
<td>Steuerungsmethoden</td>
<td>420</td>
</tr>
<tr>
<td>7.4.10</td>
<td>Durchführung und Steuerung von Großprojekten</td>
<td>421</td>
</tr>
<tr>
<td>7.5</td>
<td>Personalmanagement</td>
<td>422</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Einführung</td>
<td>422</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Personalplanung</td>
<td>423</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Personalschaffung</td>
<td>424</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Personalentwicklung</td>
<td>425</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Mitarbeiterführung</td>
<td>427</td>
</tr>
<tr>
<td>7.5.6</td>
<td>Mitarbeiterbeurteilung</td>
<td>428</td>
</tr>
<tr>
<td>7.5.7</td>
<td>Konfliktmanagement</td>
<td>429</td>
</tr>
<tr>
<td>7.5.8</td>
<td>Entlohnung und Tarifierung</td>
<td>430</td>
</tr>
<tr>
<td>7.5.9</td>
<td>Mitarbeiterqualifizierung</td>
<td>432</td>
</tr>
<tr>
<td>7.5.10</td>
<td>Qualifizierungsplanung</td>
<td>432</td>
</tr>
<tr>
<td>7.5.11</td>
<td>Gestaltung der Qualifizierungsmaßnahmen</td>
<td>432</td>
</tr>
<tr>
<td>7.5.12</td>
<td>Qualifizierungsbestimmungen</td>
<td>433</td>
</tr>
<tr>
<td>7.5.13</td>
<td>Beteiligungskonferenzen</td>
<td>433</td>
</tr>
<tr>
<td>7.6</td>
<td>Produktmanagement</td>
<td>434</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Übersicht: PLM, PDM, ERP</td>
<td>434</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Die PLM-Phasen</td>
<td>435</td>
</tr>
<tr>
<td>7.7</td>
<td>Arbeitsschutz- und Gesundheitsschutzmanagement</td>
<td>440</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Der Mensch ist das Maß</td>
<td>440</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Ergonomie</td>
<td>440</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Sicherheit durch ergonomische Gestaltung</td>
<td>443</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Büroarbeitsplätze</td>
<td>444</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Arbeitsbelastungen</td>
<td>445</td>
</tr>
<tr>
<td>7.7.6</td>
<td>Schwere der Arbeit</td>
<td>445</td>
</tr>
<tr>
<td>7.7.7</td>
<td>Psychische und mentale Belastungen</td>
<td>446</td>
</tr>
<tr>
<td>7.7.8</td>
<td>Belastungen durch Schichtarbeit</td>
<td>447</td>
</tr>
<tr>
<td>7.7.9</td>
<td>Managementaufgaben</td>
<td>448</td>
</tr>
<tr>
<td>7.7.10</td>
<td>Gefährdungen und Schutzmaßnahmen</td>
<td>449</td>
</tr>
<tr>
<td>7.7.11</td>
<td>Mechanische Gefährdungen</td>
<td>449</td>
</tr>
<tr>
<td>7.7.12</td>
<td>Elektrische Gefährdungen</td>
<td>453</td>
</tr>
<tr>
<td>7.7.13</td>
<td>Gefahrstoffe</td>
<td>455</td>
</tr>
<tr>
<td>7.7.14</td>
<td>Brand- und Explosionsgefahren</td>
<td>457</td>
</tr>
<tr>
<td>7.7.15</td>
<td>Heiß und kalte Stoffe</td>
<td>458</td>
</tr>
<tr>
<td>7.7.16</td>
<td>Klima am Arbeitsplatz</td>
<td>459</td>
</tr>
<tr>
<td>7.7.17</td>
<td>Gefährdungen durch Lärm</td>
<td>460</td>
</tr>
<tr>
<td>7.7.18</td>
<td>Gefährdungen durch Vibrationen und Stöße</td>
<td>464</td>
</tr>
<tr>
<td>7.7.19</td>
<td>Gefährdungen durch Strahlung</td>
<td>465</td>
</tr>
<tr>
<td>7.7.20</td>
<td>Persönliche Schutzerleichterungen (PSA)</td>
<td>468</td>
</tr>
<tr>
<td>7.7.21</td>
<td>EU-Maschinenrichtlinie</td>
<td>469</td>
</tr>
<tr>
<td>7.7.22</td>
<td>Europäische Sicherheitsnormen</td>
<td>470</td>
</tr>
<tr>
<td>7.8</td>
<td>Umweltmanagement (UM)</td>
<td>472</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Umweltschutz im Unternehmen</td>
<td>472</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Umweltorientierung</td>
<td>473</td>
</tr>
<tr>
<td>7.8.3</td>
<td>DIN EN 14001</td>
<td>474</td>
</tr>
<tr>
<td>7.8.4</td>
<td>Ziele</td>
<td>474</td>
</tr>
<tr>
<td>7.8.5</td>
<td>Umsetzung der Norm</td>
<td>477</td>
</tr>
<tr>
<td>7.8.6</td>
<td>Die Eingabe-/Ausgabe-Analyse</td>
<td>480</td>
</tr>
<tr>
<td>7.8.7</td>
<td>Auditierung</td>
<td>481</td>
</tr>
<tr>
<td>7.9</td>
<td>Energiemanagement und Lastverwaltung</td>
<td>484</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Gesamtstruktur</td>
<td>484</td>
</tr>
<tr>
<td>7.9.2</td>
<td>DIN EN 16001</td>
<td>484</td>
</tr>
<tr>
<td>7.9.3</td>
<td>Energiebilanz</td>
<td>485</td>
</tr>
<tr>
<td>7.9.4</td>
<td>Energiemanagement</td>
<td>485</td>
</tr>
<tr>
<td>7.9.5</td>
<td>Lastverwaltung</td>
<td>488</td>
</tr>
<tr>
<td>7.10</td>
<td>IT-Management</td>
<td>490</td>
</tr>
<tr>
<td>7.10.1</td>
<td>IT-Risk- und Compliance-Management</td>
<td>491</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Einführung</td>
<td>491</td>
</tr>
<tr>
<td>7.10.3</td>
<td>Vorschriften und Gesetze</td>
<td>491</td>
</tr>
<tr>
<td>7.10.4</td>
<td>Strukturierung</td>
<td>494</td>
</tr>
<tr>
<td>7.10.5</td>
<td>Sicher Kommunikation</td>
<td>497</td>
</tr>
<tr>
<td>7.10.6</td>
<td>Gefährdung durch Missbräuche</td>
<td>498</td>
</tr>
<tr>
<td>7.10.7</td>
<td>Serverraum</td>
<td>498</td>
</tr>
<tr>
<td>7.10.8</td>
<td>Sabotage</td>
<td>498</td>
</tr>
<tr>
<td>7.10.9</td>
<td>Diebstahl</td>
<td>499</td>
</tr>
<tr>
<td>7.10.10</td>
<td>Datensicherung</td>
<td>500</td>
</tr>
<tr>
<td>7.10.11</td>
<td>Veränderungen von Dateien</td>
<td>501</td>
</tr>
<tr>
<td>7.10.12</td>
<td>Sicherheitsrisiken bei WLAN</td>
<td>502</td>
</tr>
<tr>
<td>7.10.13</td>
<td>Passwörter</td>
<td>503</td>
</tr>
<tr>
<td>7.10.14</td>
<td>Gefährdungen durch technisches Versagen</td>
<td>504</td>
</tr>
<tr>
<td>7.10.15</td>
<td>Schadsoftware</td>
<td>505</td>
</tr>
<tr>
<td>7.11</td>
<td>Notfallmanagement</td>
<td>507</td>
</tr>
</tbody>
</table>
Unter Produktion versteht man das Erzeugen von Gütern und Dienstleistungen (Bild 1).

Das Maß für die Produktionsleistung eines Landes ist das Bruttoinlandsprodukt (BIP). Es schließt alle Wertschöpfungen eines Landes pro Jahr ein. Bezieht man das BIP auf einen einzelnen Landesbewohner erhält man das BIP-Pro-Kopf. Dieses ist ein Maß für die Wirtschaftsleistung eines Landes. Es ist in den westlichen Industrieländern relativ hoch z. B. in Deutschland etwa 40000 $ pro Kopf (Bild 2).
1.1 Produktionsfaktoren
Produktion setzt voraus, dass
- Arbeitskräfte,
- Kapital und
- Boden, d. h. ein Ort zur Verfügung steht (Bild 1).

Wichtig ist dabei, dass ein solcher Ort in einer politisch stabilen, d. h. sicheren Region liegt. Niemand wird Investitionen in unsicheren Gebieten vornehmen.

Die technischen Voraussetzungen sind die Verfügbarkeiten von:
- Energie,
- Werkstoffen,
- Werkzeugen,
- Wissen,
- Kommunikationseinrichtungen und
d- einer Transportinfrastruktur, d. h. Verkehrswege und Verkehrsmittel (Bild 2).

Globalisierung
1.2 Ziel der Produktion

Gewinne stellen Anreize für Unternehmungen dar und sie sind notwendig um Investitionen tätigen zu können. Gewinne kann man erzielen, wenn Kosten, Qualität und Lieferbereitschaft im Einklang stehen (Bild 1) und wenn für das Produkt eine Nachfrage besteht. Daraus leitet sich für eine erfolgreiche Produktion die Forderung nach Kundenorientierung ab.

Einzigartigkeit

Man kann davon ausgehen, dass es für alle Produkte Wettbewerber gibt oder alsbald geben wird. So stehen Produktionsunternehmen stets im Stress besser als andere zu sein.

Wandlungsfähigkeit

Bessersein verlangt Einzigartigkeit (Bild 2)

- im Produkt selbst oder
- im Produktionsprozess oder
- in der Qualität der Beschäftigten oder
- in der Standortinfrastruktur oder
- in der Kombination dieser Merkmale.

Bild 1: Gewinnerzielung

Bild 2: Einzigartigkeit und Wandlungsfähigkeit
1.3 Innovation

Das Innovationsmanagement hat die Aufgabe Innovationen in den Unternehmen systematisch zu planen, zu steuern, zu bewerten und zu fördern.

Man unterscheidet bei Produkt- und Prozessinnovationen (Bild 1):
- die Impulsphasen mit der Verfolgung zukunftsweisender Technologien,
- die Bewertungsphase mit der Überprüfung auf Nutzen und die
- Transferphase mit der Produktion und Marktdurchdringung.

Innovationsmerkmale.
Kennzeichnend für eine Innovation sind objektive oder auch subjektive Vorteile gegenüber Bisherigem. Zu den typischen objektiven Vorteilen gehören z. B. die Innovationsmerkmale:
- Energieeinsparung (Bild 2),
- Materialeinsparung,
- Teilereduzierung (Bild 3),
- Höhere Sicherheit,
- Längere Lebensdauer.

Neben diesen materiellen und ökonomischen Vorteilen können Innovationen auch in einem Gewinn an Prestige bestehen.

Innovationen können in Produkt- und Prozessinnovationen unterteilt werden (Bild 1):
- die Impulsphasen mit der Verfolgung zukunftsweisender Technologien,
- die Bewertungsphasen mit der Überprüfung auf Nutzen und die
- Transferphasen mit der Produktion und Marktdurchdringung.

Impulsphasen
- Verfolgung neuer Technologien
 - z. B. Lithium-Ionen-Akku

Wertphasen
- Überprüfung auf Nutzen und Machbarkeit im Auto
 - z. B. Gewicht, Leistung, Lebensdauer, Rohstoffverfügbarkeit

Transferphasen
- Konstruktion und Produktion
 - z. B. neue Generation von E-Fahrzeugen

Bild 1: Innovationskette, Beispiel E-Automobil

Bild 2: Energieeinsparung durch Leichtbauweise

Bild 3: Teilereduzierung durch IHU-Technologie
1.4 Produktzeugung

Abhängig von der Anordnung und der Struktur der Produktionsmittel unterscheidet man bei der Erzeugung von Stückgütern:

- Die Werkbankfertigung,
- die Baustellenfertigung,
- die Werkstattfertigung,
- die Fließfertigung.

1.4.1 Werkbankfertigung

1.4.2 Baustellenfertigung

Hier ist das Fertigungsobjekt meist an einen wechselnden Ort gebunden, wie z. B. bei der Herstellung eines Hauses oder aber es sind sehr sperriger Güter, wie z. B. Schiffe und große Kraftwerksturbinen (Bild 3). Man unterscheidet daher die außerbetriebliche Baustellenfertigung und die innerbetriebliche Baustellenfertigung.

Die Arbeiten können häufig in Form von Gruppenarbeit und als eine ganzheitliche Tätigkeit verrichtet werden. Der Werker oder Mitarbeiter hat einen intensiven Bezug zu seiner Arbeit, er kennt konkret den Auftraggeber, die Fertigungstermine und kann oft auch unterschiedliche Tätigkeiten verrichten. Er trägt unmittelbar Verantwortung für die Qualität des Produkts, den Arbeitsfortschritt und die Arbeitssicherheit.

Bild 1: In der Werkstatt eines Steinmetz

Bild 2: Antike Gießerei, Darstellung auf einer griechischen Vase, um 500 v. Chr.

Bild 3: Montage einer Kraftwerksturbine beim Kunden
1.4.3 Werkstattfertigung

Bei der Werkstattfertigung, nämlich der Weiterentwicklung der Werkbankfertigung, sind die Maschinen für einen Aufgabentypus in Werkstätten zusammengefasst, z. B. die Schweißerei, die Dreherei, die Schmiede (Bild 1). So sind in der Schweißerei gleiche oder ähnliche Schweißmaschinen aufgestellt. Es gehören aber auch für die Aufgabe des Schweißens ergänzende Maschinen und Geräte dazu, wie z. B. eine Richtpresse.

Die Arbeiten bei der Werkstattfertigung lassen sich auch in Form der Gruppenarbeit organisieren. Die Werker tragen in ihrem Teilbereich Verantwortung für die Qualität (Bild 3), die Fertigungstermine und teilweise auch für die Produktionsabläufe innerhalb der Werkstätte.

Bild 1: An der Schmiedepresse

Bild 2: Transportvorgänge bei der Werkstattfertigung (Beispiele)

Bild 3: Sichtprüfung von Bauteilen
1.4.4 Fließfertigung

In der Fließfertigung wird die Produktion, meist von serienidentischen Produkten, in aufeinanderfolgende Produktionsschritte gegliedert und in eine dazu passende räumliche und zeitliche Folge hintereinandergeschaltet. Das Fließband mit kurzzyklisch ablaufenden, gleichartigen Verrichtungen ist das Synonym dafür.

Fließfertigung kann z. B. ohne Taktbindung vollständig händisch erfolgen (Bild 1) oder vollständig automatisiert im Takt (Bild 2) oder im Mix, also zum Teil automatisiert. Bei manuellen Arbeiten in einer Fertigungsleine ist stets eine Pufferung (Bild 3) vorzusehen um die Mitarbeiter, wenigstens phasenweise, vom Takt zu entkoppeln. Die Fließfertigung ist gekennzeichnet durch eine meist geringe Fertigungstiefe, d. h. es werden viele Komponenten zugekauft und sehr spezielle, von Dritten entwickelte, Materialien eingesetzt.

Das Fließprinzip ermöglicht bei minimalen Transportwegen, Transportzeiten und Lagerflächen für die Fertigung von Serien gleicher oder sehr ähnlicher Produkte ein Maximum an Ausbringung, ein Maximum an Qualität und ein Minimum an Kosten.
1.4.4.1 Lineare Produktlinien

Produktion im industriellen Bereich ist durch *prozessorientierte Segmentierungen* in Teilprozesse und durch personelle Aufteilungen und durch räumliche Trennungen gekennzeichnet.

Bild 1: Lineare Produktlinien

Bild 2: PKW-Fertigung der 50er-Jahre

Bild 3: Roboter zur flexiblen Automatisierung von Produktionsystemen

Bild 4: Struktur einer Montagelinie
1.4.4.2 Segmentierung der Fließproduktion

Typisch für die Fließproduktion ist die Taktbindung, d. h. entsprechend der beabsichtigten Produktionsleistung (Fertigprodukte pro Zeiteinheit) sind die benötigten Teile und die Montagen in festen Zeiteinheiten zu erbringen.

Transferstraße

Sieht man die Fließfertigung ohne Puffer vor und stellt ein einziges serienidentisches Produkt her, so kann man sich die Produktion als eine Reihenproduktion (Bild 1) mit Einzelstationen und einer Verkettung z. B. mit Kette, Fließband, Hubbalken vorstellen. Man spricht von Transferstraßen. Bei Störung an einer Station steht allerdings die gesamte Fertigung still.

Fließproduktionen dieser Art gibt es für Teile mit relativ wenigen Arbeitsstationen, z. B. Transferstraßen zur Herstellung von Pleuern (Bild 2). Die wichtigsten Arbeitsaufgaben sind hier das Bohren und Reiben des kleinen und des großen Auges, das Bohren und das Gewindeherstellen zur Verschraubung des großen Auges, das Laser-Cracken (Laserritzen und Brechen) des großen Auges und das Verschrauben. Die Werkzeuge und die Arbeitsbewegungen in den einzelnen Stationen müssen nun so zusammengefasst sein, dass jede Station etwa gleich lange benötigt, also gut ausgelastet ist. Es liegt eine strenge Taktbindung vor. Sie wird in Sekunden angegeben. Alle Teile die sich in der Transferstraße befinden werden zur gleichen Zeit bearbeitet und zur gleichen Zeit weitertransportiert (weitergetaktet). Um etwa gleiche Arbeitszeiten pro Station zu erreichen werden manche Stationen, z. B. als Einspindlerstationen, andere als Mehrspindlerstationen (für gleichzeitig mehrere Arbeitsoperationen) ausgeführt.

Ein weiteres Problem ist die Werkzeugstandzeit. Sie sollte so sein, dass der Werkzeugwechsel an allen Stationen zur gleichen Zeit anfällt. Das ist nur selten erzielbar und so werden die Arbeitsstationen mit Werkzeugwechseln und Schweizerwerkzeugen, d. h. mit mehreren gleichen Werkzeugen ausgestattet. Sind nun, wie heute z. B. für Pleuel unterschiedlicher Fahrzeugtypen. Man spricht von einer flexiblen Transferstraße.

Bild 2: Pleuel

Bild 1: Transferstraße
Rundtaktanlagen
Im Unterschied zur linearen Anordnung der Transferstraßen wird bei den Rundtaktmaschinen ein Drehteller mit den darauf aufgespannten Werkstücken verwendet. Um dieses Drehteller herum sind mehrere Bearbeitungsstationen, z. B. sechs bis über zehn so angeordnet, wie es der Bearbeitungsreihenfolge entspricht (Bild 1). Bei günstiger Planung sind die Arbeitszyklen an jeder Station etwa gleich lang, so dass, während eines Zeittaktes, alle Stationen ausgelastet sind.

Eine erhöhte Flexibilität, insbesondere wenn Maschinen sehr unterschiedlicher Größe in den Fertigungsschluss zu integrieren sind, erreicht man mit einer flexiblen Verkettung, z. B. mit Robotern (Bild 2). Hier ist es z. T. auch möglich die Reihenfolge in der Maschinennutzung zu verändern.

1.4.4.3 Topologie der Fließfertigung
Die lineare Struktur der Fließfertigung ist meist nur in kurzen Produktionsabschnitten innerhalb einer Fertigung möglich. Zur Flexibilisierung der Fertigung müssen die Einzelstationen schnell umrüstbar sein und bei Erweiterung der Arbeitsoperationen muss die Linie verlängert werden können (Bild 3). Bei Erhöhung der Ausbringung ist eine zweite Linie einzurichten.

Eine verbesserte Situation, was sowohl die Zahl der Produktionsmengen angeht, als auch die Zahl der Arbeitsaufgaben, sowie eine Verbesserung der Störungsbewältigung, erreicht man mit einer flexiblen Vernetzung von Bearbeitungsstationen.

Man unterscheidet:
- Ergänzende Stationen und
- ersetzende Stationen.

Anmerkung: Es ist eigentlich ein Glück, dass es für die optimale Gestaltung einer Fertigung keine eindeutige und stets gültige Topologie gibt. So haben Unternehmen mit Kreativität immer eine Chance besser zu sein als andere.

1 Topologie = Lehre von der Anordnung von Gebilden, von griech. topo = Ort, Gelände und griech. logos = Lehre, Wissenschaft
1.4.4.4 Flexible Produktlinien

Komplexe Serienfabrikate, wie z. B. Fahrzeuge aber auch Nichtserienprodukte, z. B. Sondermaschinen, d. h. Produkte die aus vielen Komponenten, Baugruppen, Einzelmaschinen bestehen begründen anstelle linearer Prozessketten ein ganzes Prozessnetzwerk (Bild 1). Besonders deutlich ist dies in der Automobilindustrie. Hier hat man im Karosseriebau eine große Variantenvielfalt zu bewältigen. Zwar wird versucht die Aufbauplatform für viele Fahrzeugvarianten gleich zu halten, es wird aber im Produkttix produziert.

Erreicht wird diese Flexibilität durch eine Fabrikstruktur in der die Fertigungsbereiche flexibel mit ersetzenden Einrichtungen miteinander verkettet sind. Es gibt also nicht nur eine Pressenanlage und nur eine Lackieranlage sondern die Anlagen sind mehrfach vorhanden und können schnell umgerüstet und den aktuellen Bedarfen angepasst werden.

Die Verkettung erfolgt mit flexiblen Transportmitteln, z. B. mit Fahrerlosen Transportsystemen (FTS) bzw. Robotcarrier oder über Elektrohängebahnen (Bild 2) mit Weichen und Kreuzungen oder mit Robotern zum Umsetzen in unterschiedliche Förderstrecken. Die FTS und die Robotcarrier haben zugleich Hebe- oder Drehmechanismen (Bild 3) um bei Handmontagen die Baugruppen ergonomisch richtig zu positionieren.

Die kennzeichnenden Schlagworte sind:
- Typenflexibilität,
- Mengenflexibilität,
- Änderungsflexibilität und
- Störungsflexibilität.

Bild 1: Prozessnetzwerk

Bild 2: Hängebahn

Bild 3: Robotcarrier

Die Fügetechnik wird auf vollautomatisierbare Techniken ausgerichtet:
- Clinchen (Bild 1),
- Schrauben,
- Punktschweißen,
- Bolzenschweißen,
- Verkleben,
- Verschnappen.

So können Roboter die Fügearbeiten übernehmen (Bild 2). Typspezifische Einzweckautomaten werden nicht verwendet. Ihre Verwendbarkeit ist nach dem Produktauslauf nicht mehr gegeben. Ferner ist die Entwicklungszeit für Einzweckautomaten im Vergleich zu einer roboterisierten Station zu lang. Es rechnet sich daher nicht, auch wenn der Platzbedarf und die Investitionskosten möglicherweise geringer sind.

Eine besondere Herausforderung ist die Teilebereitstellung. Diese erfolgt rechnergestützt und muss sicherstellen, dass zur richtigen Zeit die richtigen Teile an der jeweiligen Arbeitsstation verfügbar sind.

Hierfür wird vorteilhaft ein eigener Werksbereich als Kommissionierbereich definiert. Die Teile müssen zur automatisierten Robotermontage geordnet zugeführt bzw. bereitgestellt werden (Bild 3).

Durch Vormontagen in Module kommt die Produktion mit einer überschaubaren Modulvielfalt aus. So werden z. B. Lenkungen (Bild 4) und Achsen, komplett vormontiert, vom Zulieferer typgenau zur richtigen Zeit an der richtigen Station zugeliefert.