Arbeitsblätter
Einführung in
PROFINET
Danksagung

Ich danke folgenden Institutionen/Firmen/Personen für die Bereitstellung und Inbetriebnahme von Hard- und Software:

SCHAEFER KALK GmbH & Co KG, Dr. Holger Drescher, Volker Ax, Andreas Hies, Max Geis, 65623 Hahnstätten, www.schaeferkalk.de

Siemens AG, Edgar Eiser, Frank Hermann (56068 Koblenz); Jürgen Scheid, Toni Hoier (68165 Mannheim); Ludwig Eble, Michaela Weinholfer (80333 München) und dem Siemens Support Dienst www.siemens.de

Die Siemens AG, vertreten durch Edgar Eiser, Frank Hermann, Jürgen Scheid, Toni Hoier, Ludwig Eble und Michaela Weinholfer, stellten die Software und die vielen Bilder zur Verfügung und gaben mir technischen Support.

TechSmith Corp., Anton Bollen, Woodlake (USA) www.techsmith.de

Die TechSmith Corporation, vertreten durch Herrn Anton Bollen, stellte die Software SnagIt kostenfrei zur Verfügung mit der die Screenshots erstellt und durch den Austausch der Screenshots von Softwaremeldungen die technische Beratung durchgeführt wurde.

rkt; Frau Brigitte Kaip, Herr Rainer Kaip (42799 Leichlingen) www rktypo.com

Frau Brigitte Kaip und Herr Rainer Kaip haben in unermüdlicher Kleinarbeit mein Manuskript und die anschließenden Korrekturen durch eine ideenreiche Satz- und Bildgestaltung in eine professionelle Form gebracht.

Das vorliegende Buch wurde auf der Grundlage der aktuellen amtlichen Rechtschreibregeln erstellt.

ISBN 978-3-8085-3058-0

1. Auflage 2013
Druck 5 4 3 2 1
Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Behebung von Druckfehlern untereinander unverändert sind.

© 2013 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten
http://www.europa-lehrmittel.de
Druck: M. P. Media-Print Informationstechnologie GmbH, 33100 Paderborn
Hard- und Softwarevoraussetzungen

Software/Hardware
Für die Inbetriebnahme wird die Software Siemens *Simatic Step 7 V5.5 SP 1 Student* verwendet, welche die Betriebssysteme *Windows XP Professional SP3, Vista Ultimate und Business/Server 2003 SP2 oder Windows 7 Professional* benötigt (© eingetragene Warenzeichen der Microsoft Corporation).

Die Hardware ist auf einem Rasterblech aufgebaut (Tabelle 1, Umschlag-Innenseite vorne).

 Folgende PROFINET-Komponenten sind neben einem Standard-PC mit Netzwerkanschluss erforderlich:

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Homepage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gerät (Anzahl)</th>
<th>Typ</th>
<th>Bestellnummer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laststromversorgung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS/CPU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kommunikationsprozessor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Port-Switch¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feinmodulares Dezentrales Peripheriegerät ET 200S, bestehend aus:

IO-Device Interfacemodul			
Powermodul (2 x)			
Digitaleingabemodul (5 x)			
Digitalausgabemodul (5 x)			

Topologie

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

¹) *Hinweis:* Aus Kostengründen kann auf den Einbau eines Switches verzichtet werden.
Inhaltsverzeichnis

Theoretische Grundlagen

<table>
<thead>
<tr>
<th>1</th>
<th>Allgemeine Netzwerke</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Grundlagen</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Physikalische Topologie</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Zugriffsprotokolle</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Passive Netzkomponenten / Übertragungsmedien</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Aktive Netzkomponenten</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>TEST 1: Allgemeine Netzwerke</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Netzwerke der Automatisierungstechnik (IE/PROFINET)</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Vernetzungshierarchie in der Automatisierungstechnik</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Industrial Ethernet (IE)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Merkmale von PROFINET</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>PROFINET IO und PROFINET CBA</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>OSI-7-Schichtenmodell</td>
<td>18</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Standard-Ethernet im OSI-7-Schichtenmodell</td>
<td>18</td>
</tr>
<tr>
<td>2.5.2</td>
<td>PROFINET im OSI-Schichtenmodell</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Telegramme im Ethernet</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Applikations-/Kommunikationsbeziehungen in PROFINET</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>Adressierung im Ethernet</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>TEST 2: Netzwerke der Automatisierungstechnik</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>SIMATIC-Systemgeräte in PROFINET</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>SIMATIC IO-Controller CP 343-1 Advanced</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>SIMATIC IO-Device ET 200S</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>SIMATIC Switch SCALANCED XF204</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>SIMATIC Leitungen und Steckverbinder</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Netzwerkfunktionalitäten der SIMATIC Systemkomponenten</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>TEST 3: SIMATIC-Systemgeräte in PROFINET</td>
<td>39</td>
</tr>
</tbody>
</table>

Projektierung der Hard-/Software

<table>
<thead>
<tr>
<th>4</th>
<th>Projektierung einer PROFINET-Anlage</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Hardwarekonfiguration</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Softwarekonfiguration</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Musterprogramm (Förderbandanlage)</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>TEST 4: Projektierung einer PROFINET-Anlage</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Anlage</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>SIMATIC SCALANCED XF204 WEB Based Management</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Kurzanleitung</td>
<td>72</td>
</tr>
</tbody>
</table>
1 Allgemeine Netzwerke

1.1 Grundlagen

Ein Netzwerk besteht in der einfachsten Form, z. B. aus zwei PCs oder Laptops, die über eine gemeinsame Leitung miteinander verbunden sind (Bild 1).

In der Netzwerktechnik werden für die Netzwerkteilnehmer die Fachbegriffe aus Tabelle 1 benutzt.

Geben Sie jeweils eine Definition an.

<table>
<thead>
<tr>
<th>Tabelle 1: Fachbegriffe für Netzwerkteilnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begriff</td>
</tr>
<tr>
<td>Host₁</td>
</tr>
<tr>
<td>Client²</td>
</tr>
<tr>
<td>Server³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 2: Gründe für eine Vernetzung (Auswahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion/Erläuterung</td>
</tr>
<tr>
<td>Ressourcen-Sharing</td>
</tr>
<tr>
<td>Peripheriegeräte werden von mehreren Hosts genutzt, z. B. Drucker.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Software-Sharing</td>
</tr>
<tr>
<td>Server-Software kann von mehreren Hosts genutzt werden, z. B. CAD-Programm.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Data-Sharing</td>
</tr>
<tr>
<td>Server-Daten können von mehreren Hosts genutzt werden, z. B. Schülerdaten.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Bild 1: Netzwerk aus zwei Laptops
Netzwerke können in folgende zwei Typen unterteilt werden (Tabelle 1). Erklären Sie jeweils die Funktionen.

<table>
<thead>
<tr>
<th>Tabelle 1: Grundtypen von Netzwerken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>Peer-to-Peer-Netzwerk (P2P)</td>
</tr>
<tr>
<td>Client-Server-Netzwerk</td>
</tr>
</tbody>
</table>

1) von engl. peer = Gleichrangiger

Je nach örtlicher Ausdehnung können bis zu vier Netzwerktypen unterschieden werden (Tabelle 2). Geben Sie den genauen Wortlaut der Abkürzungen an. Beschreiben Sie die wesentliche Eigenschaft der Netzwerke hinsichtlich ihrer örtlichen Ausdehnung und nennen Sie je ein Beispiel.

<table>
<thead>
<tr>
<th>Tabelle 2: Einteilung der Netzwerke nach örtlicher Ausdehnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ</td>
</tr>
<tr>
<td>PAN3)</td>
</tr>
<tr>
<td>LAN</td>
</tr>
<tr>
<td>MAN</td>
</tr>
<tr>
<td>WAN</td>
</tr>
</tbody>
</table>

3) Die Einteilung der Netzwerktypen erfolgt häufig in drei Klassen ohne den Typ PAN.
1.2 Physikalische Topologie

Die physikalische Topologie (Lehre von der Lage und Anordnung) kennzeichnet den realen Aufbau und die Verbindungen eines Netzwerkes.

Hosts können auf fünf häufig vorkommende Arten zu einem Netzwerk verbunden werden (Tabelle 1).

Geben Sie jeweils in Tabelle 1 die Namen an.

<table>
<thead>
<tr>
<th>Name/Bild</th>
<th>Beschreibung</th>
<th>V = Vor-, N = Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>Alle Hosts sind über eine gemeinsame Leitung miteinander verbunden.</td>
<td>V leichte Erweiterbarkeit; Keine Störung bei Ausfall eines Hosts. N geringe Netzwerkausdehnung; es kann immer nur ein Teilnehmer senden, da sonst Kollisionen entstehen; Totalausfall bei Ausfall der Busleitung.</td>
</tr>
<tr>
<td>Stern</td>
<td>Alle Hosts sind über einen Switch an einen zentralen Server (Knotenrechner) angeschlossen; häufig Stadt- und Firmennetze.</td>
<td>V leichte Erweiterbarkeit; Keine Störung bei Ausfall eines Hosts. N Totalausfall bei Ausfall des Switches; hoher Verkabelungsaufwand.</td>
</tr>
<tr>
<td>Baum</td>
<td>Ausgehend von einer Wurzel (Zentrale) werden alle Hosts über Knoten erreicht. Hinweis: Diese Struktur kann auch als erweiterter Stern ausgelegt werden.</td>
<td>V leichte Erweiterbarkeit. N Totalausfall bei Ausfall der Wurzel (Zentrale).</td>
</tr>
</tbody>
</table>

1) In der Praxis sind weitere Bauteile wie z.B. Switches für eine Funktionalität erforderlich.
1.6 Test 1: Allgemeine Netzwerke

1. Geben Sie eine Definition für folgende Begriffe an: a) Client b) Server
 a) Netzwerkteilnehmer, der Dienste im Netzwerk nutzt.
 b) Netzwerkteilnehmer, der Dienste im Netzwerk zur Verfügung stellt.

2. Wie nennt man Netzwerke, in denen Hosts die Funktionen von Client und Server übernehmen können?
 Peer-to-Peer Netzwerk (P2P)

3. Nennen Sie die Namen und die Abkürzung der vier Netzwerktypen, die man nach örtlicher Ausdehnung unterscheiden kann.
 Local Area Network, LAN
 Metropolitan Area Network, MAN
 Wide Area Network, WAN
 Personal Area Network, PAN

4. Erklären Sie den Begriff Physikalische Topologie.

5. Beschreiben Sie den Aufbau eines Busnetzes und nennen Sie Vorteile und Nachteile.
 Alle Hosts sind über einen gemeinsamen Leiter, genannt Bus, miteinander verbunden.
 Vorteile: leichte Erweiterbarkeit; keine Störung bei Ausfall eines Hosts
 Nachteile: geringe Netzwerkausdehnung; es kann immer nur ein Teilnehmer senden; Totalausfall bei Ausfall der Busleitung
 Busse gibt es in den Ausführungen paralleler Bus (mehrere Datenleitern + Adressleitern + Steuerleitern) und serieller Bus (meist zwei Leiter).

6. Welche Sendeberechtigung haben Busteilnehmer bei einem nichtdeterministischen (stochastischen) Buszugriff?
 Alle Busteilnehmer haben die gleiche Sendeberechtigung. Es ist bei gleichzeitigem Buszugriff ein Kollisionsmechanismus erforderlich.

7. Wie nennt man ein gängiges Busverfahren, bei dem ein Sendefreizeichen nacheinander an alle sendenden Busteilnehmer weitergegeben wird?
 Das Token-Passing-Verfahren.

8. Welches Netzwerkzugriffsverfahren zeigt das Ablaufschema in Bild 1?
 Das Ablaufschema zeigt das CSMA/CD-Verfahren.
 Das JAM-Signal wird von jenen Hosts gesendet, die an der Kollision beteiligt sind. Es sorgt dafür, dass die sendenden Hosts ihre Übertragung der Daten abbrechen.

10. Wie erfolgt die Datenübertragung bei Vollduplex-Betrieb?
 Diese Betriebsrat ermöglicht das gleichzeitige Senden und Empfangen von Daten.
 TP-Leitungen müssen dazu zwei Adernpaare besitzen.

11. Nennen Sie Vorteile der Datenübertragung mit Lichtwellenleitern.
 a) sehr hohe Übertragungsgeschwindigkeit,
 b) abhörsicher,
 c) kein Nebensprechen,
 d) keine Beeinflussung durch äußere elektromagnetische Störfelder.

12. Welche Bandbreite kann man bei \(B \cdot f = 1 \text{ GHz} \cdot \text{km} \) über eine Gesamtstrecke von 8 km realisieren?
 \(f = B \cdot \text{km}/1000 \text{ MHz} \cdot \text{km}/8 \text{ km} = 125 \text{ MHz} \)
 Die Bandbreite verhält sich umgekehrt proportional zur Entfernung. Das bedeutet, wird z.B. die zu übertragende Frequenz verdoppelt, so wird die Entfernungsstrecke halbiert.

13. Nennen Sie die zwei grundsätzlichen Betriebsarten von WLAN.
 a) Ad-Hoc-Modus
 b) Infrastruktur-Modus
 Beim Einsatz mehrerer Access-Points entstehen sogenannte Funkzellen (Sendebereiche). Beim Wechsel von einer Funkzelle in die andere Funkzelle erfolgt ein automatisches Roaming (Wechsel).
2 Netzwerke der Automatisierungstechnik (IE/PROFINET)

2.1 Vernetzungshierarchie in der Automatisierungstechnik

In der Automatisierungstechnik werden nicht nur einzelne Sensoren und Aktoren über ein Bussystem miteinander verbunden, auch Daten müssen zwischen verschiedenen Fertigungszellen oder Abteilungen ausgetauscht werden.

Diese Aufgaben werden einer mehrstufigen Automatisierungshierarchie (pyramidenförmige Rangordnung) zugeordnet und sowohl vertikal als auch horizontal mit verschiedenen Vernetzungstechniken verknüpft.

Die Anzahl, die Bezeichnung und das eingesetzte Bussystem der Ebenen variieren (Bild 1).

Tragen Sie die Namen der Ebenen aus Tabelle 1 in Bild 1 ein und nennen Sie die Funktion der einzelnen Ebenen.

Tabelle 1: Aufgabenverteilung in der Vernetzungshierarchie

<table>
<thead>
<tr>
<th>Ebene</th>
<th>Funktion/Aufgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitebene</td>
<td>Anbindung an das Internet. Produktionsstand erfassen.</td>
</tr>
<tr>
<td></td>
<td>Lagerbestand erfassen. Wareneinkauf disponieren.</td>
</tr>
<tr>
<td>Zellebene</td>
<td>Datenaustausch zwischen SPS, Industrie-PCs und Geräten zum Bedienen und Beobachten.</td>
</tr>
<tr>
<td>Feldebene</td>
<td>Sensoren erfassen physikalische Größen, Aktoren wandeln Datentelegramme in anwendungsbezogene Aktionen um.</td>
</tr>
</tbody>
</table>
2.2 Industrial Ethernet (IE)

In der Automatisierungstechnik erfolgt die Vernetzung zunehmend mit dem Industrial Ethernet (IE), welches eine Erweiterung des Standard-Ethernets aus der Bürowelt darstellt. Das Industrial Ethernet wird von verschiedenen Herstellern in unterschiedlichen Varianten auf dem Markt angeboten. Standardisiert sind die Netzwerkkomponenten, wie z.B. Leitungen, Stecker oder Switches, während z.B. die Busprotokolle unterschiedlich sein können.

Ermitteln Sie für die in Tabelle 1 angegebenen Typen des Industrial Ethernets die Homepage der Nutzerorganisationen, die für das jeweilige System Standards festlegen und geben Sie jeweils einen bekannten Hersteller an.

<table>
<thead>
<tr>
<th>Tabelle 1: Untervarianten des Industrial Ethernet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Ethernet</td>
<td>Homepage der Nutzerorganisation</td>
</tr>
<tr>
<td>PROFINET</td>
<td>www.profibus.com</td>
</tr>
<tr>
<td>(Process Field Ethernet) oder (PROFIBUS ETHERNET)</td>
<td></td>
</tr>
<tr>
<td>EtherCAT</td>
<td>www.ethercat.org</td>
</tr>
<tr>
<td>(Ethernet for Control Automation Technology)</td>
<td></td>
</tr>
<tr>
<td>Powerlink</td>
<td>www.ethernet-powerlink.org</td>
</tr>
<tr>
<td>Modbus TCP-IDA</td>
<td>www.modbus.org</td>
</tr>
<tr>
<td>(Interface for Distributed Automation)</td>
<td></td>
</tr>
<tr>
<td>HSE</td>
<td>www.fieldbus.org</td>
</tr>
<tr>
<td>(High Speed Ethernet)</td>
<td></td>
</tr>
<tr>
<td>JetSync</td>
<td>www.jetter.de</td>
</tr>
<tr>
<td>SERCOS</td>
<td>www.sercos.de</td>
</tr>
<tr>
<td>(SERial Real-Time-COmmunication System)</td>
<td></td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td>www.odva.org</td>
</tr>
<tr>
<td>(IP = Industrial Protocol)</td>
<td></td>
</tr>
</tbody>
</table>

Hinweis: ODVA = Open DeviceNet Vendor Association

Hinweis:

Die Zuordnung einzelner Systeme zum Industrial Ethernet ist nicht immer eindeutig, da es sich teilweise nur um Erweiterungen des Ethernet Standards handelt. Die Variante mit dem größten Markanteil ist PROFINET, die von der PROFIBUS-Nutzerorganisation e.V. (PNO) verwaltet wird. Deren Homepage bietet im Bereich Downloads erste Informationen (Bild 1).
2.3 Merkmale von PROFINET

- Echtzeitfähiges Ethernet (Real-Time-Ethernet)
- Sicherheitskonzept für relevante Befehle, z. B. NOT-AUS
- Datenraten von 10 Mbit/s bis 100 Mbit/s
- Integration bestehender Feldbussysteme, z. B. PROFIBUS
- Nutzung von IT-Diensten, z. B. Störungs-E-Mail
- Netzkomponenten für den Einsatz in „rauer“ Industrieumgebung (Staub, Feuchtigkeit, hohe Temperaturen usw.)
- Robuste und einfache Anschlusstechnik
- Hohe Anforderungen an die elektromagnetische Verträglichkeit (EMV)
- Ausfallsichere Netze durch schnelle Redundanz und redundante Stromversorgung
- Optimierte, offene Kommunikation zwischen Automatisierungskomponenten, z. B. TCP/IP

2.4 PROFINET IO und PROFINET CBA

PROFINET wird in zwei Funktionsklassen unterteilt. Geben Sie in Tabelle 1 die Bedeutung der Abkürzungen IO und CBA an.

<table>
<thead>
<tr>
<th>Tabelle 1: Funktionsklassen von PROFINET</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFINET IO</td>
</tr>
<tr>
<td>IO: InOut</td>
</tr>
</tbody>
</table>

Ein IO-Controller¹ (SPS) steuert den Datenaustausch mit den IO-Devices (Feldgeräten). Mithilfe eines IO-Supervisors (PG²/Laptop) wird das System konfiguriert.

Funktionale Gliederung komplexer Automatisierungsanlagen in autonom arbeitende Teilanlagen (technologische Module). Der Anwender projektiert nur die Vernetzung der Ein-/Ausgangsvariablen der fertig programmierte Teilprogramme.

¹ von engl. to control = „beherrschen“, „die Herrschaft oder Kontrolle haben“ ² PG = Programmiergerät
2.5 OSI-7-Schichtenmodell

2.5.1 Standard-Ethernet im OSI-7-Schichtenmodell

Die ISO (International Standardization Organization) hat das OSI-7-Schichtenmodell (Open Systems Interconnection) entwickelt, damit die Kompatibilität und Kommunikation von Netzen untereinander möglich ist.

Ergänzen Sie in der Tabelle 1 die deutsche und englische Bezeichnung der Schichten/Layer.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Schicht</th>
<th>Funktion</th>
<th>Schicht/Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>A</td>
<td>Bindeglied zwischen Benutzer und Netz, z. B. mittels eines Browsers</td>
<td>Anwendung/Application</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>Übersetzt Daten vom sendenden Host und empfangenden Host in ein einheitliches Datenformat</td>
<td>Darstellung/Presentation</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>Aufbau, Verwaltung und Beendigung der Verbindung zwischen den Hosts</td>
<td>Sitzung/Session</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>Segmentierung der Daten vom sendenden Host und Zusammensetzen der Daten beim empfangenden Host</td>
<td>Transport/Transport</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>Verbindungsaufbau zwischen den Hosts über IP-Adressen</td>
<td>Vermittlung/Network</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>Bündelung von Bits in Datenpakete; Behebung von Übertragungsfehlern; Adressierung über MAC-Adressen</td>
<td>Sicherung/Data Link</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>Festlegung der physikalischen Datenübertragung der Bits, z. B. Leitungen, Stecker, Spannungspegel usw.</td>
<td>Bitübertragung/Physical</td>
</tr>
</tbody>
</table>

Informationen, die zwischen den Busteilnehmern verschickt werden sollen, durchlaufen beim Sender eine Datenkapselung nach dem OSI-7-Schichtenmodell (Bild 1).

Jede OSI-Schicht fügt hierbei eine Protokollinformation an den Anfang (Header) und an das Ende (Trailer) und reicht anschließend die gesamte Schicht weiter nach unten. Beim Empfänger findet in umgekehrter Reihenfolge eine Entkapselung statt.

Bild 1: Prinzip der Datenkapselung
Theoretische Grundlagen
SIMATIC-Systemgeräte in PROFINET

3 SIMATIC-Systemgeräte in PROFINET

3.1 SIMATIC IO-Controller CP 343-1 Advanced

Der SIMATIC CP 343-1 Advanced ist die Kommunikationsbaugruppe der Simatic S7-300 mit PROFINET Funktionalität.

Der CP 343-Prozessor entlastet die SPS-CPU von Kommunikationsaufgaben.

Sie sollen mithilfe der im Internet verfügbaren Informationen und der vorhandenen Hardware, die in den nachfolgenden Tabellen abgefragten Informationen ergänzen.

Recherchieren Sie den Dateinamen für das deutsche Gerätehandbuch des SIMATIC IO-Controllers CP 343-1 Advanced:

GH_cp343-1gx30_0.pdf

Geben Sie die Bedeutung der nummerierten Elemente des SIMATIC CP 343-1 Advanced an (Tabelle 1).

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LED-Anzeigen</td>
</tr>
<tr>
<td>2</td>
<td>Versions-Typ</td>
</tr>
<tr>
<td>3</td>
<td>Verbindung Rückwandbus</td>
</tr>
<tr>
<td>4</td>
<td>PROFINET-Schnittstelle 2 x 8-polige RJ45-Buchse</td>
</tr>
<tr>
<td>5</td>
<td>Schieber Erdungs-/ Massekonzept</td>
</tr>
<tr>
<td>6</td>
<td>Anschluss Spannungsversorgung</td>
</tr>
<tr>
<td>7</td>
<td>Gigabit-Schnittstelle 1 x 8-polige RJ45-Buchse</td>
</tr>
<tr>
<td>8</td>
<td>Firmwareversion</td>
</tr>
<tr>
<td>9</td>
<td>MAC-Adressen</td>
</tr>
</tbody>
</table>
Die Anzeige auf der Frontplatte besteht aus 11 LEDs zur Anzeige des Betriebs- und Kommunikationszustandes (Bild 1).

Ergänzen Sie in der Tabelle 1 die fehlenden Angaben (Kurzbezeichnung der LED/Bedeutung).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>LED</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SF</td>
<td>Sammelfehler</td>
</tr>
<tr>
<td>2</td>
<td>BF1</td>
<td>Busfehler Gigabit–Schnittstelle</td>
</tr>
<tr>
<td>3</td>
<td>BF2</td>
<td>Busfehler PROFINET IO (PROFINET-Schnittstelle)</td>
</tr>
<tr>
<td>4</td>
<td>MAINT</td>
<td>Wartung erforderlich (Diagnosepuffer)</td>
</tr>
<tr>
<td>5</td>
<td>DC5V</td>
<td>DC 5 V Spannungsversorgung über den Rückwandbus (grün = OK)</td>
</tr>
<tr>
<td>6</td>
<td>RX/TX</td>
<td>Azyklischer Telegrammverkehr, beispielsweise SEND/RECEIVE (nicht relevant für PROFINET IO–Daten)</td>
</tr>
<tr>
<td>7</td>
<td>RUN</td>
<td>Betriebszustand RUN</td>
</tr>
<tr>
<td>8</td>
<td>STOP</td>
<td>Betriebszustand STOP</td>
</tr>
<tr>
<td>9</td>
<td>X2P1/X2P2</td>
<td>Link-Status von Ethernet-Port 1/2 (PNO-Schnittstelle)</td>
</tr>
<tr>
<td>10</td>
<td>X1P1</td>
<td>Link-Status der Gigabit–Schnittstelle</td>
</tr>
</tbody>
</table>

Ergänzen Sie in Tabelle 2 für eine gegebene LED-Anzeigenkombination den CP-Kommunikationszustand.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>RX/TX</th>
<th>X2P1/X2P2/X1P1</th>
<th>CP-Kommunikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>⭐</td>
<td></td>
<td>CP sendet/empfängt über IE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hinweis: PROFINET IO-Dienste werden hier nicht signalisiert.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Port hat keine Verbindung zu IE.</td>
</tr>
<tr>
<td>3</td>
<td>⚫ (grün)</td>
<td></td>
<td>Port hat Verbindung zu IE (Link-Status).</td>
</tr>
<tr>
<td>4</td>
<td>⭐ (grün-gelb)</td>
<td></td>
<td>LED blinkt gelb bei grünem Ruhelicht:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Port sendet/empfängt über PROFINET IO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hinweis: Hier werden portspezifisch alle empfangenen/gesendeten Telegramme signalisiert, also auch diejenigen, die nur durch den Switch durchgeleitet werden.</td>
</tr>
<tr>
<td>5</td>
<td>⚫ (gelb)</td>
<td></td>
<td>Datentransfer am Port über IE.</td>
</tr>
</tbody>
</table>
Ergänzen Sie in Tabelle 1 den Betriebszustand und den Status der LEDs.

Tabelle 1: LED-Anzeige über den Betriebszustand

<table>
<thead>
<tr>
<th>Nr.</th>
<th>SF (rot)</th>
<th>BF1/2 (rot)</th>
<th>RUN (grün)</th>
<th>STOP (gelb)</th>
<th>CP-Betriebszustand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>●</td>
<td>Ø</td>
<td>○</td>
<td>●</td>
<td>Anlaufend nach Netz „EIN“ oder Angehalten (STOP mit Fehler (In diesem Zustand sind die CPU oder intelligente Baugruppen im Rack über PG-Funktionen weiterhin erreichbar.)</td>
</tr>
<tr>
<td>2</td>
<td>○</td>
<td>○</td>
<td>⋄</td>
<td>●</td>
<td>Anlaufend (STOP ⇒ RUN)</td>
</tr>
<tr>
<td>3</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>Laufend (RUN)</td>
</tr>
<tr>
<td>4</td>
<td>○</td>
<td>○</td>
<td>⋄</td>
<td>●</td>
<td>Anhaltend (RUN ⇒ STOP)</td>
</tr>
<tr>
<td>5</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>Angehalten</td>
</tr>
<tr>
<td>6</td>
<td>Ø</td>
<td>●</td>
<td>Ø</td>
<td>Ø</td>
<td>Keine LAN-Leitung angeschlossen oder doppelte IP-Adresse erkannt.</td>
</tr>
<tr>
<td>7</td>
<td>Ø</td>
<td>⋄</td>
<td>●</td>
<td>Ø</td>
<td>Der CP ist als PROFINET IO-Device projektiert; es erfolgt kein Datenaustausch mit dem PROFINET IO-Controller (nur BF2).</td>
</tr>
<tr>
<td>8</td>
<td>●</td>
<td>⋄</td>
<td>●</td>
<td>Ø</td>
<td>Der CP (als PROFINET IO-Controller projektiert) hat mindestens ein IO-Device als gestört erkannt (nur BF2).</td>
</tr>
<tr>
<td>9</td>
<td>⋄</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>RUN mit externem Fehler von IO-Devices</td>
</tr>
<tr>
<td>10</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>⋄</td>
<td>Baugruppenfehler/Systemfehler</td>
</tr>
</tbody>
</table>

Die Informationen können Sie dem Gerätehandbuch des CP 343-1 Advanced mit der Bestellnummer 6GK7 343−1GX21−0XE0 entnehmen.

Dies ist die Vorgängerversion des aktuellen SIMATIC IO-Controller CP 343-1 Advanced.

Hinweis: Sie ist auf dem PROFINET-Rack 1 verbaut.

Tabelle 2: Reservierte Portnummern für TCP/UDP

<table>
<thead>
<tr>
<th>TCP</th>
<th>UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-Nummer</td>
<td>Protokolle</td>
</tr>
<tr>
<td>20, 21</td>
<td>FTP</td>
</tr>
<tr>
<td>25</td>
<td>SMTP</td>
</tr>
<tr>
<td>80</td>
<td>HTTP</td>
</tr>
<tr>
<td>102</td>
<td>RFC1006</td>
</tr>
<tr>
<td>135</td>
<td>RPC-DCOM</td>
</tr>
</tbody>
</table>
4 Projektierung einer PROFINET-Anlage

4.1 Hardwarekonfiguration

Phasen der Projektierung und Inbetriebnahme

| Phase | Supervisor | Aktion | CPU/Controller | Aktion | Device Switch
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Neues Projekt anlegen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Hardware-Update (o)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>GSD-Dateien installieren (o)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Hardware konfigurieren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Topologie konfigurieren (o, al)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Geräte auf Werkseinstellung zurücksetzen (o; al)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP-Adresse zuweisen (Taufe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gerätenamen zuweisen (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Überprüfung Gerätenamen (n) oder Gerätenamen zuweisen (al)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vergabe der IP-Adresse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verbindungsaufbau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Datenaustausch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Anwenderprogramm erstellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwenderprogramm laden</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(o = optional; al = automatische Inbetriebnahme; n = nichtautomatische Inbetriebnahme; 1) sofern vorhanden)

Bild 1: Phasen der Projektierung und Inbetriebnahme
Phase 1: Neues Projekt anlegen

Starten Sie SIMATIC Step 7 und aktivieren im SIMATIC Manager den Befehl Datei ⇒ Neu.
In dem Folgedialog Bild 1 vergeben Sie einen Projektname und bestätigen Sie den vorgegebenen Ablageort C:\Program Files(x86)\Siemens\Step7\s7proj.

Hinweis:
Sofern Ihre Festplattenpartition mit einem Wiederherstellungsschutz bei Neustart ausgestattet ist, sollten Sie eine ungeschützte Partition, z.B. d: oder einen externen Datenträger, z.B. USB-Stick auswählen.
Markieren Sie das Projekt mit der linken Maustaste (im folgenden LMT genannt) und aktivieren Sie die Befehlssequenz Einfügen ⇒ Station ⇒ 2 SIMATIC 300-Station (Bild 3).

Öffnen Sie nun im linken Software-Fenster die Baumstruktur, bis Sie mit der LMT die SIMATIC 300(1) markieren können.
Öffnen Sie durch einen Doppelklick mit der LMT im rechten Software-Fenster auf den Button Hardware den Hardwarekonfigurator (HW Konfig) (Bild 4).
Phase 2: Hardware-Update (optional)

STEP7 bietet Ihnen die Möglichkeit, in zwei Schritten neue Hardwarekomponenten, wie z.B. CPUs, in den Hardwarekatalog nachzuinstallieren.

Hinweis:
Trotz Durchführung eines HW-Updates kann es später vorkommen, dass die Firmwareversion in der Hardware einen neueren Ausgabestand hat als die im Hardwarekatalog angezeigte Version.
Da Abwärtskompatibilität besteht, übernehmen Sie später aus dem Hardwarekatalog die letzte aktualisierte Version.

Schritt 1:
Herunterladen des Updates aus dem Internet
Wählen Sie den Menübefehl Extras ⇒ HW-Updates installieren (Bild 1).

Im Folgedialog bestätigen Sie das Anlegen eines Verzeichnisses für das HW-Update mit OK (Bild 2).

Daraufhin können Sie im Auswahldialog (Bild 3) einige Einstellungen vornehmen, wie z.B. den Ablageordner festzulegen.

Nachdem Sie die Vorgaben mit OK bestätigt haben, werden Sie zur Sicherheit vor dem Anlegen des Ablageordners nochmals aufgefordert, das Anlegen mit OK zu bestätigen (Bild 4).

Im Folgedialog haben Sie die Möglichkeit festzulegen, ob das HW-Update über Internet oder von Datenträger erfolgen soll (Bild 1, folgende Seite).

Bestätigen Sie mit dem Button Ausführen die Internetvariante, da diese Quelle die aktuellsten Daten enthält.

Step7 markiert als Voreinstellung im folgenden Fenster alle Systemgeräte zum Download.

Bei langsamen Internetverbindungen sollten Sie die von Ihnen aktuell verbauten Systemgeräte in folgenden Schritten (folgende Seite) selektieren:
4.3 Musterprogramm (Förderbandanlage)

Sie sollen nun ein kleines Abschlussprojekt als Prüfungsvorbereitung realisieren.

1 Beschreibung des Prüfungsauftrages

2 Technologieschema

3 Funktionsbeschreibung

Die Förderbandanlage wird mit S0 betriebsbereit (P1) geschaltet. Ist ein Lkw in der Befüllstation (B4, P2) kann mit S1 der Befüllvorgang gestartet werden. Eine Stauung des Fördergutes auf den Transportbändern ist durch eine geeignete Ein- und Ausschaltfolge zu vermeiden, wobei die An- und Auslaufzeit der Förderbänder aufgrund ihrer unterschiedlichen Längen verschieden sind (5 s, 10 s, 15 s). Der Auslaufvorgang startet mit einer Verzugszeit (2 s), wenn der Lkw zu mindestens 80% befüllt ist (B5, P4); danach wird die Anlage ausgeschaltet. Jeder Motor wird durch ein Motorschutzrelais (B1 bis B3) überwacht. Auf beiden Seiten der Förderbänder sind jeweils Reißleinen-Notschalter (S3, S2) installiert. Im Störungsfall sollen alle Förderbänder sofort abgeschaltet werden und über eine Meldeleuchte P3 ein Alarm signalisiert werden. Zusätzlich wird aus Sicherheitsgründen die Anlage mit S0 abgeschaltet und der LKW verlässt die Verladestation. Nach Behebung der Störung wird diese mit einem Taster S4 quittiert.

Das eigentliche Anwenderprogramm ist als Funktion FC1 zu hinterlegen, welche vom OB1 aufgerufen wird. Es soll eine Ablaufsteuerung in FUP umgesetzt werden und dabei in der Startroutine mit einem Richtimpuls- und Betriebsmerker gearbeitet werden.

4 Grafcet-Plan (Bild 1, folgende Seite)

5 Symboltabelle: Ergänzen Sie die Symboltabelle (Tabelle 1, übemächste Seite).

6 Lösung zur Ablaufsteuerung in der Darstellung FUP:

Eine mögliche Lösung finden Sie im Downloadbereich zu diesen Arbeitsblättern unter www.europa-lehrmittel.de.
Projektierung der Hard-/Software
Projektierung einer PROFINET-Anlage

Bild 1: GRAFCET-Plan
Projektierung der Hard-/Software

Projektierung einer PROFINET-Anlage

Tabelle 1: Symboltabelle (Teil 1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Adresse</th>
<th>Datentyp</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>A2.0</td>
<td>BOOL</td>
<td>Meldeleuchte Anlage betriebsbereit</td>
</tr>
<tr>
<td>P2</td>
<td>A2.1</td>
<td>BOOL</td>
<td>Meldeleuchte Fahrzeug in Beladeposition</td>
</tr>
<tr>
<td>P3</td>
<td>A3.0</td>
<td>BOOL</td>
<td>Meldeleuchte Störung</td>
</tr>
<tr>
<td>P4</td>
<td>A3.1</td>
<td>BOOL</td>
<td>Meldeleuchte Lkw 80% voll</td>
</tr>
<tr>
<td>M1</td>
<td>A0.0</td>
<td>BOOL</td>
<td>Förderband 1 (Lastschütz Q1)</td>
</tr>
<tr>
<td>M2</td>
<td>A0.1</td>
<td>BOOL</td>
<td>Förderband 2 (Lastschütz Q2)</td>
</tr>
<tr>
<td>M3</td>
<td>A1.0</td>
<td>BOOL</td>
<td>Förderband 3 (Lastschütz Q3)</td>
</tr>
<tr>
<td>M4</td>
<td>A4.0</td>
<td>BOOL</td>
<td>Schüttgutventil</td>
</tr>
<tr>
<td>S0</td>
<td>E0.0</td>
<td>BOOL</td>
<td>Schalter Anlage EIN/AUS</td>
</tr>
<tr>
<td>S1</td>
<td>E0.1</td>
<td>BOOL</td>
<td>Taster Start (NO)</td>
</tr>
<tr>
<td>S2</td>
<td>E124.4</td>
<td>BOOL</td>
<td>Taster Reißleinen-Notschalter links (NC)</td>
</tr>
<tr>
<td>S3</td>
<td>E124.5</td>
<td>BOOL</td>
<td>Taster Reißleinen-Notschalter rechts (NC)</td>
</tr>
<tr>
<td>S4</td>
<td>E2.0</td>
<td>BOOL</td>
<td>Taster Störung Quittierung (NO)</td>
</tr>
<tr>
<td>B1</td>
<td>E124.1</td>
<td>BOOL</td>
<td>Motorschutzrelais M1 (NC)</td>
</tr>
<tr>
<td>B2</td>
<td>E124.2</td>
<td>BOOL</td>
<td>Motorschutzrelais M2 (NC)</td>
</tr>
<tr>
<td>B3</td>
<td>E124.3</td>
<td>BOOL</td>
<td>Motorschutzrelais M3 (NC)</td>
</tr>
<tr>
<td>B4</td>
<td>E1.0</td>
<td>BOOL</td>
<td>Endschalter Fahrzeug in Beladeposition (NO) (ja = 1)</td>
</tr>
<tr>
<td>B5</td>
<td>E1.1</td>
<td>BOOL</td>
<td>Taster Lkw 80% voll (NC) (ja = 0)</td>
</tr>
<tr>
<td>Merker Motorsch NOT_AUS</td>
<td>M120.0</td>
<td>BOOL</td>
<td>Merker Motorschutz und NOT-AUS</td>
</tr>
<tr>
<td>Betriebsmerker</td>
<td>M110.0</td>
<td>BOOL</td>
<td>Betriebsmerker</td>
</tr>
<tr>
<td>Richtimpulsmerker</td>
<td>M111.0</td>
<td>BOOL</td>
<td>Richtimpulsmerker</td>
</tr>
</tbody>
</table>

Tabelle 2: Symboltabelle (Teil 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Adresse</th>
<th>Datentyp</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T1</td>
<td>Timer T1 = 5 s</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>T3</td>
<td>Timer T3 = 15 s</td>
<td></td>
</tr>
<tr>
<td>Schritt 1</td>
<td>M100.1</td>
<td>BOOL</td>
<td>Schritt 1</td>
</tr>
<tr>
<td>Schritt 2</td>
<td>M100.2</td>
<td>BOOL</td>
<td>Schritt 2</td>
</tr>
<tr>
<td>Schritt 3</td>
<td>M100.3</td>
<td>BOOL</td>
<td>Schritt 3</td>
</tr>
<tr>
<td>Schritt 4</td>
<td>M100.4</td>
<td>BOOL</td>
<td>Schritt 4</td>
</tr>
<tr>
<td>Schritt 5</td>
<td>M100.5</td>
<td>BOOL</td>
<td>Schritt 5</td>
</tr>
<tr>
<td>Schritt 6</td>
<td>M100.6</td>
<td>BOOL</td>
<td>Schritt 6</td>
</tr>
<tr>
<td>T2</td>
<td>T2</td>
<td>Timer T2 = 10 s</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>T4</td>
<td>Timer T4 = 2 s</td>
<td></td>
</tr>
<tr>
<td>Schritt 7</td>
<td>M100.7</td>
<td>BOOL</td>
<td>Schritt 7</td>
</tr>
<tr>
<td>Schritt 8</td>
<td>M100.8</td>
<td>BOOL</td>
<td>Schritt 8</td>
</tr>
<tr>
<td>Schritt 9</td>
<td>M101.1</td>
<td>BOOL</td>
<td>Schritt 9</td>
</tr>
<tr>
<td>Schritt 10</td>
<td>M101.2</td>
<td>BOOL</td>
<td>Schritt 10</td>
</tr>
<tr>
<td>Schritt 11</td>
<td>M101.3</td>
<td>BOOL</td>
<td>Schritt 11</td>
</tr>
<tr>
<td>Schritt 12</td>
<td>M101.4</td>
<td>BOOL</td>
<td>Schritt 12</td>
</tr>
</tbody>
</table>