Berger Uwe
Hartmann Andreas
Schmid Dietmar

3D-Druck – Additive Fertigungsverfahren

RAPID PROTOTYPING • RAPID TOOLING • RAPID MANUFACTURING

2. Auflage, mit Bilder-CD

VERLAG EUROPA-LEHRMITTEL • Nourney, Vollmer GmbH & Co. KG,
Düsselberger Straße 23 • 42781 Haan-Gruiten

Europa-Nr.: 50335
Die Autoren des Buches:
Berger, Uwe Dr.-Ing., Prof., Aalen
Hartmann, Andreas Dipl.-Ing. (FH), Stadtbergen
Schmid, Dietmar Dr.-Ing., Prof., Essingen

Lektorat und Leitung des Arbeitskreises: Prof. Dr.-Ing. Dietmar Schmid, Essingen

Bildbearbeitung: Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern
Agathe Schmid-König, Technische Illustration und Gestaltung, 64668 Rimbach
Grafische Produktionen Jürgen Neumann, 97222 Rimpar

Dem Buch wurden die neuesten Ausgaben der Normen und Gesetze zu Grunde gelegt. Verbindlich sind jedoch nur die Normblätter selbst und die amtlichen Gesetzestexte. Daten und Darstellungen, die sich auf Herstellerangaben beziehen sind gewissenhaft recherchiert. Sie sind aber mit keiner Gewährleistung irgendwelcher Art verbunden und können sich durch weiteren Fortschritt auch verändert haben. Der Verlag und die Autoren übernehmen daher in keiner Weise irgendwelche Verantwortung oder Haftung aus der Nutzung von Daten oder Darstellungen dieses Buches.

2. Auflage 2017

Druck 5 4 3 2 1
Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Korrektur von Druckfehlern unverändert sind.

ISBN 978-3-8085-5034-2

© 2017 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten
http://www.europa-lehrmittel.de

Umschlaggestaltung: braunwerbeagentur, 42477 Radevormwald und Grafik und Sound, 50679 Köln unter Verwendung von Fotos des Lektors

Satz: Grafische Produktionen Jürgen Neumann, 97222 Rimpar

Druck: M. P. Media-Print Informationstechnologie GmbH, 33100 Paderborn
Vorwort

Hinweise und Verbesserungsvorschläge können dem Verlag und damit den Autoren unter der E-Mail Adresse lektorat@europa-lehrmittel.de gerne mitgeteilt werden.

Winter 2016/2017

Die Autoren

Inhaltsverzeichnis

1 Einführung
- 1.1 Additive und subtraktive Fertigung: 8
- 1.2 Systematik der additiven Fertigungsverfahren: 10
 - 1.2.1 Gasförmiger Ausgangszustand: 11
 - 1.2.2 Flüssiger Ausgangszustand: 13
 - 1.2.3 Fester Ausgangszustand: 14
 - 1.2.3.1 Drahtförmige Materialien: 15
 - 1.2.3.2 Laminate: 15
 - 1.2.3.3 Pulver: 18
 - 1.3 Stützstrukturen: 20
 - 1.3.1 Schichtbauprinzipien: 21
 - 1.3.2 Schichtbauprinzipien: 22
 - 1.3.3 Zerstörungsfreie Archäologie: 61
 - 1.3.4 Zerstörungsfreie Archäologie: 62
 - 1.3.5 Bio-Manufacturing: 64
 - 1.3.6 Personal-3D-Printer: 72
 - 1.3.7 3D-MID: 74
 - 1.3.8 Mode-Design: 60
 - 1.3.9 Integralbauteile: 58
 - 1.3.10 Minerale: 55
 - 1.3.11 Metalle: 52
 - 1.3.12 Laser-Sintern: 50
 - 1.3.13 Extrudieren: 51
 - 1.4 Postprozess: 25
 - 1.4.1 Auspackanlagen: 25
 - 1.4.2 Bauteilveredlung: 25
 - 1.4.3 Thermische Nachbehandlung: 26
 - 1.4.4 Gefahren im Postprozess: 26
 - 1.4.5 Automatisierung: 118
 - 1.4.5.1 Teilevorbereitung: 114
 - 1.4.5.2 Der Strahlschmelzprozess: 113
 - 1.4.5.3 Teilvorbereitung: 114
 - 1.4.5.4 Anforderungen an die Druckköpfe: 91
 - 1.4.5.5 Funktionsprinzip: 98
 - 1.4.5.6 Besondere Verfahren: 86
 - 1.4.5.7 Direkter Materialauftrag: 88
 - 1.4.5.8 Allgemeines: 88
 - 1.4.5.9 Materialien und Verfahren: 89
 - 1.4.5.10 Prothetik und Herstellung von Werkzeugen: 36
 - 1.4.5.11 Funktionsprinzip: 98
 - 1.4.5.12 Verfahren mit Abbildeoptik: 108
 - 1.4.5.13 Verfahren mit Abbildeoptik: 109
 - 1.4.5.14 Verfahren mit Abbildeoptik: 109
 - 1.4.5.15 Maschinen-Realisierungen: 110
 - 1.4.5.16 Automatisierung: 110
 - 1.4.5.17 Prothetik und Herstellung von Werkzeugen: 36
 - 1.4.5.18 Automatisierung: 110
 - 1.4.5.19 Prothetik und Herstellung von Werkzeugen: 36
 - 1.4.5.20 Automatisierung: 110
 - 1.4.5.21 Automatisierung: 110
 - 1.4.5.22 Automatisierung: 110
 - 1.4.5.23 Automatisierung: 110

2 Prozessketten
- 2.1 Rapid Product Development (RPD): 27
- 2.2 Modellarten: 29
- 2.3 Rapid Prototyping (RP): 31
- 2.4 Rapid Tooling (RT): 34
 - 2.4.1 Direkte Herstellung von Formen und Werkzeugen: 34
 - 2.4.2 Indirekte Herstellung von Formen und Werkzeugen: 36
 - 2.4.3 Indirekte Herstellung von Formen und Werkzeugen: 36
- 2.5 Rapid Manufacturing (RM): 39

3 Potenziale Additiver Fertigung (AM)
- 3.1 Entwicklungsgang: 41
- 3.2 Materialien: 42
 - 3.2.1 Kunststoffe: 44
 - 3.2.1.1 Photopolymerisation: 48
 - 3.2.1.2 Laser-Sintern: 50
 - 3.2.1.3 Extrudieren: 51
 - 3.2.1.4 Pulverdruck-Polymerisation: 52
 - 3.2.2 Metalle: 52
 - 3.2.3 Minerale: 55
- 3.3 Anwendungsbereiche: 56
 - 3.3.1 Integralbauteile: 58
 - 3.3.2 Mode-Design: 60
 - 3.3.3 Zerstörungsfreie Archäologie: 61
 - 3.3.4 Architektur: 63
 - 3.3.5 Bio-Manufacturing: 64
 - 3.3.5.1 Dentaltechnik: 64
 - 3.3.5.2 Prothetik und Herstellung von chirurgischen Modellen: 66
 - 3.3.5.3 Hörakustik: 68
 - 3.3.5.4 Tissue Engineering: 69
 - 3.3.6 Personal-3D-Printer: 72
 - 3.3.7 3D-MID: 74
 - 3.3.8 3D-MID: 74
- 3.4 3D-Druck von Elektronikkomponenten: 74

4 Prozessarten
- 4.1 3D-Druck: 78
 - 4.1.1 Allgemeines: 78
 - 4.1.2 Pulververarbeitende Systeme: 79
 - 4.1.3 Systemkomponenten: 80
 - 4.1.4 Postprozessing: 81
 - 4.1.5 Pulveraufbereiten: 82
 - 4.1.6 Infiltieren: 83
 - 4.1.7 Prozesse: 84
 - 4.1.8 Besondere Verfahren: 86
 - 4.1.9 Direkter Materialauftrag: 88
 - 4.1.10 Allgemeines: 88
 - 4.1.11 Anlagen: 88
 - 4.1.12 Materialien und Verfahren: 89
 - 4.1.13 Stützkonstrukte: 90
 - 4.1.14 Anforderungen an die Druckköpfe: 91
 - 4.1.15 Schichterzeugung: 92
 - 4.1.16 Postprocessing: 94
 - 4.1.17 Multi-Jet Modeling (MJM): 94
 - 4.1.18 3D-Wax-Printing: 94
 - 4.1.19 Poly-Jet-Modeling (PJM): 97
 - 4.1.20 Selektives Lasersintern (LS): 98
 - 4.1.21 Funktionsprinzip: 98
 - 4.1.22 LS-Prozess: 99
 - 4.1.23 Teilevorbereitung: 100
 - 4.1.24 Anfertigung: 101
 - 4.1.25 Nachbearbeitung: 102
 - 4.1.26 Laser: 102
 - 4.1.27 Maschinen-Realisierungen: 104
 - 4.1.28 Erzielbare Genauigkeit: 105
 - 4.1.29 Anwendungsbereiche: 105
 - 4.1.30 Selektives Maskensintern (SMS): 106
 - 4.1.3.1 Allgemeines: 106
 - 4.1.3.2 Verfahren mit direkter Belichtung: 107
 - 4.1.3.3 Verfahren mit Abbildeoptik: 108
 - 4.1.3.4 Materialien und Beispiele für Teile: 109
 - 4.1.3.5 Additiver Verarbeitung von Metallen: 110
 - 4.1.3.6 Pulverbasierte Verfahren: 111
 - 4.1.3.7 Pulverbasierte Verfahren: 111
 - 4.1.3.8 Funktionsprinzip: 98
 - 4.1.3.9 Der Strahlschmelzprozess: 113
 - 4.1.3.10 Teilvorbereitung: 114
 - 4.1.3.11 Anfertigung: 114
 - 4.1.3.12 Strahlquellen: 114
 - 4.1.3.13 Baumaterialien: 115
 - 4.1.3.14 Erzielbare Genauigkeiten: 115
 - 4.1.3.15 Maschinen-Realisierungen: 115
 - 4.1.4 Layer Laminated Manufacturing (LLM): 117
 - 4.1.4.1 Traditionelle Schichtbauweisen: 117
 - 4.1.4.2 Automatisierung: 118
 - 4.1.4.3 Materialien: 119
 - 4.1.4.4 LLM-Verfahren: 120
 - 4.1.4.5 Laminated Oject Modeling (LOM): 120
 - 4.1.4.6 Paper Laminated Technology (PLT): 122
 - 4.1.4.7 MCOr-Verfahren: 123
 - 4.1.4.8 PVC Laminated Technology: 125
 - 4.1.4.9 Layer Milling Process (LMC): 126
5.5.2 Druckverfahren. 169
5.5.3 Auflösung, Genauigkeit und Frequenz 173
5.5.4 Aufbau des Drucksystems. 175
5.5.5 Sonderformen 176
5.6 Laserbasierte AM-Systeme. 177
5.7 Thermische Düensysteme. 179
5.7.1 Extrusionsköpfe für drahtförmige Werkstoffe 179
5.7.2 Extrusionsköpfe für thermisch plastifizierte Werkstoffe 180
5.7.3 Extrusionsköpfe für thermisch geschmolzene Werkstoffe 180
5.8 Hybridsysteme 181
6 3D-Datenfluss 182
6.1 CAD-Datenmodell 182
6.1.1 CAD-Flächenmodell 182
6.1.2 Volumenmodelle 184
6.2 Voxelmodell 184
6.3 Schnittstellenformate 185
6.3.1 STL-Format 185
6.3.2 SLC-Format 186
6.3.3 VRML-Format 187
6.3.4 Additive Manufacturing File Format 188
(AMF)
6.3.5 Weitere Datenformate 189
7 3D-Scannen 192
7.1 Anwendungen 192
7.2 Triangulationstechnologie 193
7.2.1 Räumliche Wahrnehmung und Triangulation 193
7.2.2 Erfassung von Punkten und Linien ... 194
7.2.3 Streifenlichtscanner 195
7.2.3.1 Scannen mit Einzellichtpunkt 195
7.2.3.2 Linienprojektionsverfahren 196
7.2.3.3 Besonderheiten und Beispiele 198
7.2.4 Photogrammetrie 202
7.3 Autofokus-Systeme 204
7.4 Lichtlaufzeitsysteme 205
7.5 Theodolit-Messsysteme 205
7.6 Röntgen-Computertomographie (CT) 206
7.6.1 Allgemeines 206
7.6.2 Funktionsweise und Technik 207
7.6.2.1 CT in der industriellen Messtechnik 207
7.6.2.2 Auflösung 208
8 Virtuelle Umgebung 210
8.1 Allgemeines 210
8.2 Szenensteuerung 211
8.3 Tracking 212
8.4 Augmented Reality, Mixed Reality 213
Fachwörterbuch Deutsch-Englisch, Sachwortverzeichnis 214
Literatur 219
Normen und Richtlinien 220
Publikationen der Autoren 221
Quellenverzeichnis 222
“Stereolithography” is a method and apparatus for making solid objects by successively “printing” thin layers of a curable material, e.g., a UV curable material, one on top of the other. A programmed movable spot beam of UV light shining on a surface or layer of UV curable liquid is used to form a solid cross-section of the object at the surface of the liquid. The object is then moved, in a programmed manner, away from the liquid surface by the thickness of one layer, and the next cross-section is then formed and adhered to the immediately preceding layer defining the object. This process is continued until the entire object is formed.

Essentially all types of object forms can be created with the technique of the present invention. Complex forms are more easily created by using the functions of a computer to help generate the programmed commands and to then send the program signals to the stereolithographic object forming subsystem.

Of course, it will be appreciated that other forms of appropriate synergistic stimulation for a curable fluid medium, such as particle bombardment (electron beams and the like), chemical reactions by spraying materials through a mask or by ink jets, or impinging radiation other than ultraviolet light, may be used in the practice of the invention without departing from the spirit and scope of the invention.

A presently preferred embodiment of the stereolithographic system is shown in elevational cross-section in FIG. 3. A container 21 is filled with a UV curable liquid 22 or the like, to provide a designated working surface 23. A programmable source of ultraviolet light 26 or the like produces a spot of ultraviolet light 27 in the plane of surface 23. The spot 27 is movable across the surface 23 by the motion of mirrors or other optical or mechanical elements (not shown) that are a part of light source 26.

The position of the spot 27 on surface 23 is controlled by a computer or other programming device 28. A movable elevator platform 29 inside container 21 can be moved up and down selectively, the position of the platform being controlled by the computer 28. As the device operates, it produces a three-dimensional object 30 by stepwise buildup of integrated laminate such as 30a, 30b, 30c.

The surface of the UV curable liquid 22 is maintained at a constant level in the container 21, and the spot of UV light 27, or other suitable form of reactive stimulation, of sufficient intensity to cure the liquid and convert it to a solid material is moved across the working surface 23 in a programmed manner. As the liquid 22 cures and solid material forms, the elevator platform 29 that was initially just below surface 23 is moved down from the surface in a programmed manner by any suitable actuator. In this way, the solid material that was initially formed is taken below surface 23 and new liquid 22 flows across the surface 23. A portion of this new liquid is, in turn, converted to solid material by the programmed UV light spot 27, and the new material adhesively connects to the material below it. This process is continued until the entire three-dimensional object 30 is formed. The object 30 is then removed from the container 21, and the apparatus is ready to produce another object. Another object can then be produced, or some new object can be made by changing the program in the computer 28.
1 Einführung

Im Jahr 1986 wurde ein neuartiges Fertigungsverfahren patentierte, welches die direkte Herstellung gegenständlicher Objekte aus einem 3D-Computermodell ermöglichen sollte. Als Werkstoff diente hierzu ein flüssiger Kunststoff, der durch Belichtung mit einem Laserstrahl zonenweise verfestigt werden konnte und durch Abfahren ebener Bahnkurven jeweils in übereinanderliegenden dünnen Schichten die Fertigung komplexester Teilegeometrien ermöglichte.

Diesem sogenannten Stereolithographieverfahren folgten sehr bald eine Reihe von alternativen Verfahren, die allesamt den schichtweisen Aufbau von 3D-Objekten aus einem digitalen Computermodell heraus gemeinsam haben (Bild 1). Das herzustellende Teil wächst hierbei Bauschicht für Bauschicht auf einer Plattform auf, wobei in der Regel die oberste Schicht durch Absenken der Bauplattform auf konstantem Niveau gehalten wird. Derartige in 21/2-D-Technik erfolgende Herstellungsverfahren werden auch als additive oder als generative Fertigungsverfahren bezeichnet.

Da diese neuartigen Fertigungsverfahren zunächst für den Prototypenbau innerhalb kurzer Zeiträumen prädestiniert schienen, wurde für sie der Begriff Rapid-Prototyping geprägt (Bild 2).

Nachdem bald immer leistungsfähigere Werkstoffe entwickelt wurden, eröffneten sich auch neue und innovative Möglichkeiten, Werkzeuge mittels dieser Verfahren in sehr kurzen Zeitspannen bereitzustellen. Damit war der Weg zum so genannten Rapid-Tooling gegeben, welches die Herstellung von kleinen und mittleren Losgrößen in Serienwerkstoffen erlaubt.

1 U.S. Patent 4,575,330; Erfinder: Charles W. Hull
2 Hull hatte die Idee, abgeleitet aus der Flachdrucktechnik (z. B. der Lithographie), durch wiederholtes übereinander Drucken von dünnen Schichten räumliche Gebilde herzustellen, siehe Seite 6.
1.1 Additive und subtraktive Fertigung

Die Fertigungsverfahren werden nach DIN 8580 in sechs Hauptgruppen eingeteilt (Bild 1):

Die in den Hauptgruppen 1 bis 4 eingesetzten Verfahren bestimmen die Form des Werkstücks und seinen stofflichen Zusammenhalt, die Verfahren der Hauptgruppen 5 und 6 zielen auf die Beeinflussung seiner Stoffeigenschaften ab.

Die chemische Grundsubstanz ist Kalziumkarbonat. Dieser natürlichen Feinstruktur steht die synthetische Architektur eines sogenannten Scaffolds (engl., Gerüst) gegenüber, das im Bio-Engineering mit einem in additiver Technik arbeitenden 3D-Drucker hergestellt wurde (Bild 3).
1.1 Additive und subtraktive Fertigung

Der Begriff Additive Fertigung (engl. additive manufacturing, Kurzbezeichnung AM), hat sich aus dem angelsächsischen Sprachraum verbreitet und verbildlicht den fundamentalen Unterschied der neuen Techniken zu den traditionellen, subtraktiv wirkenden Herstellungsverfahren. Auch zu den umformenden und umformenden Verfahren besteht der deutliche Unterschied, dass kein Formwerkzeug gefertigt werden muss, was wiederum einen subtraktiv wirkenden vorangehenden Vorgang erfordern würde.

Umgangssprachlich wird die Additive Fertigung als 3D-Druck (Normschreibweise: 3-D-Druck) bezeichnet und die zugehörigen Apparate bzw. Maschinen als 3D-Drucker.

Die derzeit industriell angewandten additiv wirkenden Fertigungsverfahren sind 2½-D-Techniken. Sie arbeiten direkt-generativ. Direkt bedeutet, dass die Geometrie des zu erzeugenden Gegenstands unmittelbar aus der digitalen, d. h. in der EDV vorliegenden Darstellung abgeleitet wird. Generativ besagt, dass das Teilevolumen schichtenweise anwächst, bis es sein Endvolumen gemäß dem digitalen Modell einnimmt.

Die Bilder 1 bis 3 zeigen die Oberflächenstruktur an SL-, 3DP- und FLM-Teilen, die in Bauschichtstärken von 0,1 mm hergestellt wurden.
1.2 Systematik der additiven Fertigungsverfahren

Verschmelzen aus dem festen Zustand (4.6) wird bei den Lasersinter- und Laserstrahlschmelzverfahren eingesetzt, Extrudieren (1.2) beim Fused-Layer-Modeling-Verfahren.

Eine Vielzahl entsprechender Wirkprinzipien ist erprobt, aber nicht alle sind erfolgreich kommerzialisiert worden.

Der gasförmige Aggregatzustand ermöglicht das additive Aufbringen feinster Schichten und ist daher die Basisteachnologie für die Halbleiter- und Elektronikbranche. Das additive Auftragen aus der Festphase ist Grundlage für die Herstellung großformatiger Werkstücke mittels draht- oder pulverbettbasierten Auftragsschweißens oder pulverbettbasierten Strahlschmelzens, beispielsweise in den Branchen des Maschinenbaus oder der Luft- und Raumfahrttechnik. Sind feinere Oberflächen an Teilen mittleren und kleineren Formats gefordert, wie z.B. in der Medizintechnik oder allgemein für Feingussanwendungen, so bietet sich die additive Fertigung aus der Flüssigphase an.

1.2 Systematik der additiven Fertigungsverfahren

1.2.1 Gasförmiger Ausgangszustand

Bei den Verfahren, die auf gasförmigem Zustand des Werkstoffs beruhen, unterscheidet man zwischen dem Grundprinzip des chemischen und dem des physikalischen Auftragens zur Baucharterzeugung (Bild 1).

Beides wird im Entwicklungsgang der Halbleiter-technologie beginnend in den 1970er Jahren für die so genannte Dünnschichttechnologie genutzt (Bild 2). Die Dünnschichttechnologie zielt hauptsächlich auf die Herstellung von Leiterplatten der Elektronik ab, bei denen zwar die Anzahl der Schichten gering ist, diese jedoch in der Regel aus verschiedenen Materialien zusammengesetzt sind. Vorzugsweise geht es hierbei um die Herstellung von halbleitenden, metallischen oder dielektrischen Schichten, die üblicherweise dünner als 1 µm sind. Diese werden aus der Gasphase durch eine chemische Reaktion (CVD, chemical vapor deposition) oder aus der Dampfphase (PVD, physical vapor deposition) sowie der ionisierten Phase durch einen physikalischen Vorgang auf einem Trägermedium (Substrat) aufgebracht. Zur Strukturierung der Schichten können Laserbearbeitung, Ionenstrahlbearbeitung oder fotolithografische Maskentechnik eingesetzt werden.

Das Wirkprinzip von CVD beruht auf der chemischen Reaktion diffundierender Gasmoleküle auf der erhitzten Oberfläche eines Substrats. Hierbei werden auch feine Vertiefungen gleichmäßig beschichtet, so dass ein konformes Auftragen an 3D-Strukturen möglich ist.

Zu CVD gehören die aus der Gasphase herauswirkenden Epitaxieverfahren (altgriech. epi – auf, taxis – Anordnung). Bei diesen werden auf einem Substrat bei Prozesstemperaturen zwischen 900 °C und 1100 °C Schichten mit gleichartiger kristalliner Gitterstruktur aufgebaut (Bild 3).

Zu den physikalisch wirkenden Verfahren, die aus der Dampfphase heraus für additive Herstellungs- vorgänge genutzt werden, gehören das

- thermische Verdampfen,
- das Laserstrahlverdampfen,
- das Lichtbogenverdampfen und
- die Katodenerstübung (Sputtering).

Hierbei wird zunächst vom festen Aggregatzu- stand ausgehend in die Dampfphase übergeführt. Im Falle der Molekularstrahlepitaxie werden auf einem Substrat Schichten mit gleichartiger kri- stalliner Gitterstruktur aufgebaut (Bild 1). Beim „Sputtering“ können keramische Verbindungen abgeschieden werden (Bild 2).

Die Strukturierung der Oberflächen kann bei den genannten Verfahren durch fotolithografische Maskentechnik erfolgen.

Die direkte Strukturierung dünner Schichten ermög- licht das Ionenstrahl-gestützte Auftragen (IBAD Ion beam assisted deposition). Die kinetische Energie der Ionen beträgt dabei zwischen 10 eV und 1000 eV.

Die additive Laser-Direkstrukturierung nach dem LDS-Verfahren (LDS, laser direct structuring) ermög- licht die Herstellung von metallisierten Leiterbahn- strukturen auf 3D-Bauteiloberflächen aus Kunststoff (Bild 3). Dabei wird das Trägersubstrat aus Polymer zunächst mit einem Infrarotlaser selektiv für das Beschichten mit Kupfer aktiviert, worauf im folgenden weitere aus Nickel und Gold bestehende Schichten stromlos abgeschieden werden.

Additive Herstellungsprozesse können realisiert werden, indem der Werkstoff aus seiner Gaspha- se durch eine chemische Reaktion oder aus seiner Dampfphase durch einen physikalischen Prozess schichtweise oder punktweise im 3D-Bauraum auf einem Trägermedium aufgebracht und verfestigt wird.
1.2 Systematik der additiven Fertigungsverfahren

1.2.2 Flüssiger Ausgangszustand

In flüssiger Form vorliegender Werkstoff kann im additiv wirkenden Herstellungsverfahren nach verschiedenen Prinzipien aufgebracht und verfestigt werden (Bild 1). Es wird unterschieden zwischen

- den indirekt aufbauenden Verfahren, bei denen die Grundfläche des Bauraums ebenenweise vollständig benetzt und dann selektiv verfestigt wird,
- den direkt aufbauenden Verfahren, bei denen diese Grundfläche direkt und selektiv benetzt und danach vollständig verfestigt wird, und
- den Verfahren, bei denen das Bauvolumen nicht in 2 1/2-D-Technik sondern dreidimensional verfestigt wird. Letzteres ist bislang nur ansatzweise verwirklicht, z. B. durch Anwendung sich räumlich schneidender Laserstrahlen oder durch holografische Belichtung.

Die Verfestigung der flüssigen oder der pastenförmigen Materialien erfolgt durch Polymerisation, bei welcher in einer chemischen Reaktion ungesättigte, aus kleinen Molekülen bestehende Kohlenwasserstoffverbindungen, sogenannte Monomere, sich zu langen Molekülketten, Polymeren, verbinden und sich bei dieser Vernetzung verfestigen. Dieser Vorgang wird durch Zuführung von Energie in Form von Licht oder Wärme initiiert.

In den zuerst genannten Verfahren wird die Flüssigkeitsschicht durch einen mechanisch oder hydraulisch wirkenden Schieber flächenhaft aufgetragen. Im folgenden Prozessschritt kann dann die Polymerisation selektiv eingeleitet werden, in dem eine Volumenschichtebene nach der anderen in 2D-Bahnen von einem Laserstrahl verfestigt wird (Stereolithographie – SL, Bild 2), in einem einzigen Verarbeitungsprozeß mit einer Zeile von feinfokussierten UV-Lichtpunkten überstrichen wird (Micro Light Switching – MLS) oder über eine dynamisch erzeugte Fotomaske auf einen Schlag beleuchtet wird (Digital Light Processing – DLP, Bild 3).

![Bild 2: SL-Verfahren](image2)

![Bild 3: DLP-Verfahren](image3)
In den selektiv benetzenden Verfahren wird das flüssige Baumaterial auf die zu verfestigenden Bereiche des jeweiligen Volumenschnitts durch hin- und herfahrende Düsenköpfe aufgebracht (Drop on Demand, DoD). Hierbei wird das Bau- material im Druckkopf thermisch verflüssigt, durch Wärmeabfuhr auf dem Bauteil verfestigt und durch Belichten auspolymerisiert (Bild 1).

Additive Herstellungsprozesse können realisiert werden, indem der Werkstoff im flüssigen Zustand schichtweise oder entlang einer 3D-Bahn auf einem Trägermedium aufgebracht und verfestigt wird.

1.2.3 Fester Ausgangszustand

1.2 Systematik der additiven Fertigungsverfahren

1.2.3.1 Drahtförmige Materialien
Draht- oder strangförmige Baumaterialien für Additive Fertigungsverfahren bestehen üblicherweise aus Kunststoffen, die durch erhitzte Düsen extrudiert werden und in zeilenförmigen Bahnen Schicht für Schicht das 3D-Teil erzeugen (Bild 1).

Die auf dem Extrudieren von Kunststoffen be ruhenden Verfahren werden unter dem Begriff Fused Layer Modeling (FLM) geführt.

1.2.3.2 Laminate

Bei aus Laminat hergestellten Bauteilen kann die natürliche Orientierung der Bauschichten beispielsweise für die Realisierung von flexiblen Bänderscharnieren vorteilhaft genutzt werden (Bild 2).

1.2.3.3 Pulver
Pulverförmige Baumaterialien sind inzwischen in einer großen Vielfalt auf metallischer, mineralischer und organischer Basis verfügbar. Die aufeinander aufgebrachten Schichten können durch
- Verkleben,
- Verbacken oder
- Verschmelzen
miteinander verbunden werden.

Je nachdem, ob eine oder mehrere Materialkomponenten zum Bindungsvorgang beitragen, spricht man von einem direkten oder einem indirekten Prozess. In Bild 2, vorhergehende Seite sind die Verfahren gegenübergestellt.

Der Bauprozess beim **Laser-Sintern** (LS), auch als **selektives Lasersintern** (SLS – Selective Laser Sintering) bezeichnet, erfolgt wie allen additiven Verfahren in Schichten (**Bild 2**). Die einzelnen Körnchen des Baumaterials bestehen aus Kunststoff (**Bild 3**) oder aus polymerummanteltem Glas, Sand oder Metall. Die Körnchen verschmelzen partiell (verbacken) durch den Laserstrahl und halten das Materialgefüge zusammen. Im Bauprozess ungenutztes Material kann in einer Siebstation aufbereitet werden (**Bild 3**).

Beim **Masken-Sintern** (MS), auch selektives Maskensintern (SMS), wird die Pulverschicht über eine jeweils neu erzeugte Tonermaske flächenmäßig mit Infrarotlicht bestrahlt und Kunststoffpulver auf diese Weise selektiv verfestigt. Beide Verfahren erzeugen somit die Verbindung gewissermaßen durch ein Verschmelzen der Polymerkörnchen (**Bild 4**).

Kunststoffpulver verarbeitende AM-Verfahren sind Lasersintern, Maskensintern, Extrudieren und Pulverdruck-Polymerisation (**Bild 1, folgende Seite**). Alternativ zu Kunststoffen können auch beliebige anorganische, mineralische Materialien im AM-Prozess extrudiert werden, sofern diese in einen pastösen Zustand versetzbar sind.
1.2 Systematik der additiven Fertigungsverfahren

Metallpulverbettbasierte AM-Verfahren ermöglichen das Herstellen sehr dünner Schichtdicken (20 µm) und feinster Strukturen. Nachteilig sind die relativ niedrigen Auftragsraten von ca. 0,01 kg/h und die Begrenzung der Arbeitsfläche wegen Laserauslenkung und Bauraumkapselung. Bei pulverstrahlbasierten Verfahren liegt die Auftragsrate um eine Größenordnung darüber (ca. 0,1 kg/h), die realisierbaren Bauschichtstärken betragen jedoch 0,1 bis 1 mm. Der Bauraum unterliegt keinen technologischen Beschränkungen.

Das EBM-Verfahren nutzt die magnetische Ablenkung von Elektronenstrahlen. Die Elektronenstrahlablenkung ermöglicht größere Ablenkgeschwindigkeiten als die Laserstrahlablenkung.

\(^1\) Diese Technik gibt es typischerweise bei den traditionellen elektromechanischen Messgeräten, den Galvanometern und bei den schnelllaufzeichnenden Messschreibern, den Spiegelgalvanometern. So bezeichnet man diese Art der Laserstrahlablenkung auch galvanometrische Ablenkung.
1.2.4 Standards

Tabelle 1, folgende Seite stellt die gemäß ASTM F2792-12a standardisierten Begriffe denen der VDI 3405 Richtlinie und den entsprechenden verbreitenden Firmenbezeichnungen gegenüber.

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>vat photopolymerization</td>
<td>AM-Prozess, bei welchem in einem Behälter flüssiges Baumaterial durch Photopolymerisation selektiv ausgehärtet wird,</td>
</tr>
<tr>
<td>material jetting</td>
<td>AM-Prozess, bei welchem Tröpfchen des Baumaterials selektiv aufgetragen werden,</td>
</tr>
<tr>
<td>binder jetting</td>
<td>AM-Prozess, bei welchem ein flüssiges Bindemittel selektiv aufgetragen wird, um ein Pulver zu verfestigen,</td>
</tr>
<tr>
<td>material extrusion</td>
<td>AM-Prozess, bei welchem Material durch eine Düse oder Öffnung selektiv verteilt wird,</td>
</tr>
<tr>
<td>powder bed fusion</td>
<td>AM-Prozess, bei welchem durch eingebrachte thermische Energie Bereiche in einem Pulverbett selektiv verschmolzen werden,</td>
</tr>
<tr>
<td>sheet lamination</td>
<td>AM-Prozess, bei welchem Schichten eines Materials flächig verbunden werden, um ein Objekt zu formen,</td>
</tr>
</tbody>
</table>

In der Übersicht sind diejenigen Verfahren, bei denen gebündelte thermische Energie zugeführt wird, unterteilt nach Zuführung des Baumaterials in Pulver- oder Drahtform.

Obwohl entsprechende Verfahren kommerzialisiert sind, ist die ASTM-Kategorie „directed energy deposition“ in VDI 3405 nicht aufgenommen.

Weder ASTM F2792-12a noch VDI 3405 berücksichtigt AM-Prozesse, die mechanische Energie für den schichtweisen, selektiven Aufbau von Objekten nutzen. Dieser Kategorie ist der Cold-Spray-Prozess zuzuordnen, als MPA-Verfahren (Metall-Pulver-Auftragsverfahren) kommerzialisiert (Hermle).

Im Gegensatz zu VDI 3405 wird der Begriff Lasersintern (LS) von ASTM als historisch angesehen und nicht mehr verwendet, da die entsprechenden AM-Prozesse die Pulverpartikel voll oder teilweise aufschmelzen, während die traditionellen Sinterverfahren mit Form und Druck bzw. Wärmezufuhr arbeiten.

Aerosol-jet-printing und Inkjet-printing sind kommerzialisierte Prozesse.
1.2 Systematik der additiven Fertigungsverfahren

Neben der Begriffsbildung ist die Standardisierung von AM-Datenformaten, von AM-Materialien und von AM-Testverfahren Arbeitsziel internationaler Normungsgremien.

Insbesondere sind die Prozessfenster pulverbasierter AM-Prozesse sehr eng an die Eigenschaften der eingesetzten Pulver geknüpft, wobei eine Vielzahl von Einflussgrößen auftreten, wie z. B. Dichte, chemische Zusammensetzung, Fließverhalten, Feuchtigkeitsgehalt, Korngrößenverteilung, Korngeometrie, u. a..

Um Rapid Manufacturing, d. h. die Herstellung von Funktions- und Serienteilen mit gleichbleibenden Eigenschaften zu ermöglichen, ist Charaktertreue der Pulverlieferungen vorauszusetzen.

Die entsprechende Charakterisierung von metallischen Pulvern und die Spezifikation hieraus gefertigter AM-Bauteile beschränkt sich bislang auf Ti6Al4V (ASTM F2924-14/ASTM F3001-14), Inconel 718 (ASTM F3056-14e1) und AlSi10Mg (VDI 3405 Blatt 2.1).

Tabelle 1: Begriffsnormierung der AM-Prozesse

<table>
<thead>
<tr>
<th>ASTM F2792-12a (2012)</th>
<th>VDI 3405 (Dez. 2014)</th>
<th>Firmenbezeichnung/Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vat Photopolymerization</td>
<td>SL, Stereolithografie</td>
<td>Aerosol-jet printing Optomec</td>
</tr>
<tr>
<td></td>
<td>DLP, Digital Light Processing</td>
<td>Inkjet printing Dimatix</td>
</tr>
<tr>
<td>Material Jetting</td>
<td>MJM, Multi-Jet Modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PJM, Poly-Jet Modelling</td>
<td></td>
</tr>
<tr>
<td>Binder Jetting</td>
<td>3DP, 3D-Printing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi Jet Fusion™ HP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ExOne®-Binder Jetting</td>
<td></td>
</tr>
<tr>
<td>Material Extrusion</td>
<td>FLM, Fused-Layer Modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDM® Stratasys</td>
<td></td>
</tr>
<tr>
<td>Powder Bed Fusion</td>
<td>TTS, Thermotransfer-Sintern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHS™ Blueprint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS, Laser-Sintern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS EOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLS® 3D Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LBM, Laser-Strahlenschmelzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMP 3D Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMLS EOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMF Trumpf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LaserCusing® ConceptLaser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laser Melting Renishaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLM® SLM Solutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBM, Elektronen-Strahlenschmelzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBM® ARCAM</td>
<td></td>
</tr>
<tr>
<td>Sheet Lamination</td>
<td>LLM, Layer Laminated Manufacturing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOM™</td>
<td></td>
</tr>
<tr>
<td>Directed Energy Deposition (DED)</td>
<td>EBAM™ Sciaky</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WAAM BAE systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMD® DM3D Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LENS Optomec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DMT InssTek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMD Trumpf, BeAM</td>
<td></td>
</tr>
</tbody>
</table>
1.3 Stützstrukturen

Stützstrukturen (Supports\(^1\)) verhindern als zusätzliches Baumaterial ein Absinken von Bauteilen im Bauraum oder deren Verzug. Die Gefahr für Absinken und Verzug ist besonders groß, solange die Bauteile noch nicht ihre Endfestigkeit erreicht haben. Ein Verzug (Curling) kann durch ungleichmäßiges Abkühlen oder ungleichmäßiges Abtrocknen bzw. Abbinden eines Bauteils entstehen. Der Verzug bedeutet in erster Linie den Verlust der Maßhaltigkeit eines Bauteils (Bild 1).

Das Absinken eines Bauteils oder eines Bauteilabschnitts kann zu Formabweichung oder im schlimmsten Fall zu einer Trennschicht führen. Eine Trennschicht bedeutet die Unterbrechung des Schichtverbunds und damit auch des Bauteils (Bild 1).

Die Stützstrukturen binden in der Regel direkt am Bauteil an. Nach Fertigstellung des Bauprozesses müssen die Stützstrukturen im Postprozess entfernt werden (Bild 2).

Bei vielen Verfahren gehen die Bauteile während des Bauvorgangs eine feste Verbindung mit der Bauplattform ein (Bild 3). Zur besseren Entfernung der Bauteile besteht die Anbindung zwischen den Bauteilen und der Bauplattform in der Regel aus einer Stützkonstruktion.

Die Baudaten der Stützstrukturen werden im Preprozess automatisch von der Maschinensoftware erstellt und können vom Bediener optimiert werden.

\(^1\) engl. support = Stütze, Träger, Aussteifung, Bettung