Industrielle Fertigung
Fertigungsverfahren, Mess- und Prüftechnik

8., neubearbeitete Auflage, mit CD
Die Autoren des Buches:

Burkhard Heine, Dr. rer. nat., Prof., Aalen: *Endkonturnahe Formgebung, Spanloses Trennen, Bauteile aus Keramik, Bauteile aus Silikatglas, Fügen, Oberflächenmodifikation, Werkstoffprüfung, Werkstoffkunde.*

Fabian Holzwarth, Dr.-Ing., Prof., Adelmannsfelden: *Fertigungsmechanik.*

Friedrich Klein, Dr rer. nat., Prof., Aalen: *Gießereitechnik.*

Wolfgang Schäfer, Dr. rer. nat., Bermatingen: *Kunststoffe und Faser verstärkte Kunststoffe.*

Matthäus Kaufmann, Dipl.-Ing., Aalen: *Werkzeugmaschinen.*

Uwe Berger, Dr.-Ing., Prof., Aalen: *Additive Fertigung.*

Peter Strobel, Dipl.-Ing., Aalen: *Koordinatenmessgeräte.*

Karl Schekulin, Dipl.-Ing., Prof., Reutlingen: *Funkenerosion, Elektrochemisches Abtragen.*

Eckehard Kalhöfer, Dr.-Ing., Prof., Aalen: *Qualifizierung von NC-Maschinen.*

Lektorat und Leitung des Arbeitskreises: Dietmar Schmid, Prof. Dr.-Ing., Essingen

Bildbearbeitung: Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern

8. Auflage 2019

Druck 5 4 3 2 1: Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Behebung von Druckfehlern untereinander unverändert sind.

ISBN 978-3-8085-5366-4

© 2019 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG., 42781 Haan-Gruiten

http://www.europa-lehrmittel.de

Satz: PER MEDIEN & MARKETING GmbH, 38102 Braunschweig

Umschlaggestaltung: braunwerbeagentur, 42477 Radrevormwald, unter Verwendung eines Pressefotos der Siemens AG.

Vorwort zur 8. Auflage

Die industrielle Fertigung hat in ihrem Kern den Bereich der industriellen Fertigungsverfahren. Zur erfolgreichen Umsetzung der industriellen Fertigung gehört zwingend die Sicherung der Qualität und somit die Mess- und Prüftechnik.

Aufgrund der Dominanz des Metallsektors innerhalb der industriellen Fertigung ist diesem Bereich der größte Teil des Buches gewidmet. Er wird in Anlehnung an DIN 8580 in der Reihenfolge Urformen (Gießen), Umformen, Trennen (Zerspanen) behandelt, wobei die Zerspantechnik besonders ausführlich dargestellt ist. Damit wird ihrer Schlüsselfunktion in unserer Industriegesellschaft Rechnung getragen.

Im Sinne der Allgemeinbildung ist bei den wichtigsten Techniken auf ihre historischen Ursprünge in der Menschheitsgeschichte Bezug genommen. Sind es doch die Fertigungsverfahren mit den zugehörigen Werkstoffen und Werkzeugen, die unsere Kulturgeschichte von der Steinzeit über die Bronze- und Eisenzeit bis hin zum Industriezeitalter geprägt haben. Nur so lässt sich der heutige Stand der Technik wirklich verstehen und in seinen Werten einordnen.

In der 8. Auflage gibt es Aktualisierungen und Neubearbeitungen in allen Teilgebieten. Besonders hervorzuheben sind die Neugestaltung der Zerspanungstechnik und der Kunststofftechnik sowie die neuen Kapitel zu Faserverstärkte Kunststoffe (FVK), Geometrische Produktspezifikation (GPS), Strahltechnik und Entgraten.

Hinweise und Verbesserungsvorschläge können dem Verlag und damit den Autoren unter der E-Mail-Adresse lektorat@europa-lehrmittel.de gerne mitgeteilt werden.

Winter 2018
Dietmar Schmid

Die wichtigsten Segmente der industriellen Fertigung sind:
- Fertigen mit Metallen,
- Fertigen mit Kunststoffen, Faserverstärkten Kunststoffen (FVK), Keramiken und Glas,
- Fügen der Bauteile und
- Behandeln der Oberflächen.

Die wichtigsten Felder der Mess- und Prüftechnik sind:
- Fertigungsmesstechnik, Geometrische Produktspezifikation (GPS),
- Werkstoffprüfung,
- Ermittlung des Bauteilverhaltens und
- Qualifizierung der Fertigungsmittel.

Die wichtigsten Segmente der industriellen Fertigung sind:

Die wichtigsten Felder der Mess- und Prüftechnik sind:
Inhaltsverzeichnis

Fertigungsverfahren

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Einführung in die industrielle Fertigungstechnik</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Fertigungstechnik als eine Triebfeder der Menschheit</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Die Fertigungsverfahren im Überblick</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Entwicklungsphasen der industriellen Technik</td>
<td>14</td>
</tr>
<tr>
<td>2 Fertigen mit Metallen</td>
<td>29</td>
</tr>
<tr>
<td>2.1 Gießereitechnik</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Gegossene Bauteile</td>
<td>29</td>
</tr>
<tr>
<td>2.1.2 Geschichtliche Entwicklung</td>
<td>32</td>
</tr>
<tr>
<td>2.1.3 Begriffe, Bezeichnungen</td>
<td>38</td>
</tr>
<tr>
<td>2.1.3.1 Unterscheidung nach Werkstoffen</td>
<td>38</td>
</tr>
<tr>
<td>2.1.3.2 Unterscheidung nach mechanischen Eigenschaften</td>
<td>38</td>
</tr>
<tr>
<td>2.1.3.3 Unterscheidung nach Gießverfahren</td>
<td>39</td>
</tr>
<tr>
<td>2.1.3.4 Art der Formfüllung</td>
<td>40</td>
</tr>
<tr>
<td>2.1.3.5 Art des Vergießens</td>
<td>41</td>
</tr>
<tr>
<td>2.1.3.6 Sonstige Unterscheidungsmerkmale</td>
<td>41</td>
</tr>
<tr>
<td>2.1.4 Gusswerkstoffe</td>
<td>42</td>
</tr>
<tr>
<td>2.1.5 Gießverfahren</td>
<td>46</td>
</tr>
<tr>
<td>2.1.5.1 Sandgießverfahren</td>
<td>46</td>
</tr>
<tr>
<td>2.1.5.2 Schwerkraftkokillengießen</td>
<td>46</td>
</tr>
<tr>
<td>2.1.5.3 Niederdruckkokillengießen</td>
<td>49</td>
</tr>
<tr>
<td>2.1.5.4 Schleudergießen</td>
<td>49</td>
</tr>
<tr>
<td>2.1.5.5 Feigießen</td>
<td>50</td>
</tr>
<tr>
<td>2.1.5.6 Druckgießen</td>
<td>51</td>
</tr>
<tr>
<td>2.1.5.7 Weitere Gießverfahren</td>
<td>56</td>
</tr>
<tr>
<td>2.1.5.8 Vergleich der Gießverfahren</td>
<td>56</td>
</tr>
<tr>
<td>2.1.6 Formtechnik</td>
<td>58</td>
</tr>
<tr>
<td>2.1.6.1 Übersicht</td>
<td>58</td>
</tr>
<tr>
<td>2.1.6.5 Handformen</td>
<td>62</td>
</tr>
<tr>
<td>2.1.6.6 Maschinenformen</td>
<td>64</td>
</tr>
<tr>
<td>2.1.6.7 Formanlagen</td>
<td>67</td>
</tr>
<tr>
<td>2.1.6.8 Kerne</td>
<td>68</td>
</tr>
<tr>
<td>2.1.6.9 Direkte Herstellung von Formen und Kernen</td>
<td>70</td>
</tr>
<tr>
<td>2.1.6.10 Formstoffe</td>
<td>71</td>
</tr>
<tr>
<td>2.1.7 Anforderungen an Gussteile und Fertigungsbedingungen</td>
<td>72</td>
</tr>
<tr>
<td>2.1.7.1 Einleitung</td>
<td>72</td>
</tr>
<tr>
<td>2.1.7.2 Vollständigkeit</td>
<td>72</td>
</tr>
<tr>
<td>2.1.7.3 Vermeiden von Kaltgießstellen</td>
<td>73</td>
</tr>
<tr>
<td>2.1.7.4 Vermeiden innerer Hohlräume</td>
<td>74</td>
</tr>
<tr>
<td>2.1.7.5 Maßhaltigkeit</td>
<td>75</td>
</tr>
<tr>
<td>2.1.7.6 Maßbeständigkeiten</td>
<td>76</td>
</tr>
<tr>
<td>2.1.7.7 Korrosionsfestigkeit</td>
<td>77</td>
</tr>
<tr>
<td>2.1.7.8 Oberflächenbeschaffenheit</td>
<td>77</td>
</tr>
<tr>
<td>2.1.8 Eigenschaften metallischer Werkstoffe</td>
<td>78</td>
</tr>
<tr>
<td>2.1.8.1 Volumeneigenschaften</td>
<td>78</td>
</tr>
<tr>
<td>2.1.8.2 Werkstoffkennwerte im Vergleich</td>
<td>80</td>
</tr>
<tr>
<td>2.1.8.3 Die Längenausdehnung</td>
<td>81</td>
</tr>
<tr>
<td>2.1.8.4 Eigenschaftsänderungen beim Übergang flüssig – fest</td>
<td>81</td>
</tr>
<tr>
<td>2.1.8.5 Dichte bei Legierungen</td>
<td>81</td>
</tr>
<tr>
<td>2.1.8.6 Aufteilen des Volumendefizits</td>
<td>82</td>
</tr>
<tr>
<td>2.1.8.7 Entstehen eines Innendefizits</td>
<td>82</td>
</tr>
<tr>
<td>2.1.8.8 Entstehung von Luft- und Gas Einschlüssen bei der Formfüllung</td>
<td>84</td>
</tr>
<tr>
<td>2.1.8.9 Entstehen von Spannungen und Rissen</td>
<td>86</td>
</tr>
<tr>
<td>2.1.8.10 Schwinding der Gussteile in festem Zustand</td>
<td>87</td>
</tr>
<tr>
<td>2.1.8.11 Thermische Eigenschaften der Gießwerkstoffe</td>
<td>89</td>
</tr>
<tr>
<td>2.2 Pulvermetallurgie (PM)</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Metallpulver</td>
<td>115</td>
</tr>
<tr>
<td>2.2.2 Die Herstellung pulvermetallurgischer Werkstücke</td>
<td>117</td>
</tr>
<tr>
<td>2.2.2.1 Aufräumen der Metallpulver</td>
<td>117</td>
</tr>
<tr>
<td>2.2.2.2 Pressen der Grünlinge</td>
<td>118</td>
</tr>
<tr>
<td>2.2.2.3 Sintern</td>
<td>120</td>
</tr>
<tr>
<td>2.2.2.4 Nachbehandlung</td>
<td>122</td>
</tr>
<tr>
<td>2.2.3 Pulverspritzgießen</td>
<td>123</td>
</tr>
<tr>
<td>2.2.4 Sinterwerkstoffe und Sinterwerkstücke</td>
<td>124</td>
</tr>
<tr>
<td>2.2.5 Gestaltung</td>
<td>124</td>
</tr>
<tr>
<td>2.3 Galvanische Verfahren</td>
<td>125</td>
</tr>
<tr>
<td>2.3.1 Galvanoformung</td>
<td>125</td>
</tr>
<tr>
<td>2.3.2 Lithographie-Galvanik-Abformung (LIGA)</td>
<td>125</td>
</tr>
<tr>
<td>2.4 Umformtechnik</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Übersicht</td>
<td>126</td>
</tr>
<tr>
<td>2.4.2 Geschichtliche Entwicklung</td>
<td>128</td>
</tr>
<tr>
<td>2.4.3 Metallkundliche Grundlagen</td>
<td>129</td>
</tr>
<tr>
<td>2.4.4 Druckformen</td>
<td>133</td>
</tr>
<tr>
<td>2.4.4.1 Wärmeabfuhr an Formen</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.2 Wärmeübergang von der Schmelze zur Form</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.3 Wärmebilanz einer Form</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.4 Wärmedurchgangszahl</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.5 Schlichten</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.6 Abkühlkurven für Gussteile</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.7 Kontakttemperatur in der Grenzfläche von Schmelze/Gussteil zur Form</td>
<td>139</td>
</tr>
<tr>
<td>2.4.4.8 Wärmeleitung in einem Körper und außen</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.9 Ermittlung der Erstarrungstemperatur</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.10 Der Erstarrungsmodul</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.11 Speierstechnik</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.12 Art der Speier</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.13 Position und Geometrie der Speier</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.14 Formstoff zum Abformen der Speier</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.15 Anforderungen an Speier</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.16 Metallstatischer Druck</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.17 Ab trennen der Speier</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.18 Abhängigkeit des Speisungsvolumens von thermischen Verhältnissen</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.19 Beleuchtung innenliegender Speier</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.20 Formfüllvorgänge</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.21 Strömungsvorgänge der Schmelze</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.22 Schwerkraftgießen</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.23 Druckgießen</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.24 Schleudergießen</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.25 Aufbau eines Gießsystems</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.26 Staufüllung und Strahlfüllung</td>
<td>196</td>
</tr>
<tr>
<td>2.4.4.27 Simulation der Formfüllung</td>
<td>196</td>
</tr>
</tbody>
</table>
1.1 Fertigungstechnik als eine Triebfeder der Menschheit

Ziel und Aufgabe

Die Fertigungstechnik hat zum Ziel Gegenstände aller Art möglichst günstig und verkaufsfähig zu fertigen. Die wichtigsten Arten der Gegenstände sind:

- Gebrauchsgegenstände,
- Fertigungsmittel,
- Vorprodukte und in kleinerem Umfang auch
- Kultgegenstände und Kunstgegenstände (Bild 1).

Die Gegenstände können sowohl relativ einfach sein, wie z.B. ein Kochtopf, als auch sehr komplex, nämlich aus vielen zusammenwirkenden Bauteilen bestehen, wie z.B. ein Kraftfahrzeug.

Während die Gebrauchsgegenstände meist für den Endverbraucher gefertigt werden, dient die Herstellung von Fertigungsmitteln wiederum der Fertigung selbst.

Hierzu zählt z.B. ein Bohrer oder eine Werkzeugmaschine, also maschinelle Werkzeuge (Maschinenwerkzeuge), die die Herstellung von Gegenständen erleichtern und verbessern. Die Einzelteile der herzustellenden Gegenstände werden während des Fertigungsprozesses als Werkstücke bezeichnet.

Die Hauptschritte im Fertigungsprozess sind, ausgehend von einem konstruierten und entwickelten Produkt: Die Produktionsplanung und -steuerung, die Materialbereitstellung, die Fertigung der Werkstücke, die Montage (Bild 2).

Der Fertigungsprozess wird begleitet vom Qualitätsmanagement. Abgeschlossen wird der Fertigungsprozess mit einem in der Qualität gesicherten und verkaufsfähigen Produkt.
Art der Fertigung

Die Fertigung erfolgt in
• handwerklicher Art oder
• industriell.

Die handwerkliche Fertigung gibt es als Handwerkskunst seit Beginn der Menschheit. Sie kennzeichnet, zusammen mit den herausragend verwendeten Rohstoffen, die Epochen der Menschheitsgeschichte u. a. Steinzeit, Bronzezeit, Eisenzeit (Bild 1).

Es sind also die Fortschritte in den Fertigungstechniken bzw. die zugehörigen Rohstoffe, welche die Hauptentwicklungen der Menschheit bestimmt haben und heute noch bestimmen.

• Arbeitsteilung,
• Arbeitsplanung und Arbeitssteuerung,
• Einsatz von Hilfsenergie (Bild 2),
• Einsatz von maschinellen Werkzeugen (Bild 3), auch mit Informationsverarbeitung und technischer Kommunikation.

Die arbeitsteilige, industrielle Fertigung ermöglicht eine kostengünstige Serienfertigung, setzt aber gleichzeitig eine hohe Genauigkeit und Qualität voraus. Die Einzelwerkstücke einer Serie sind austauschbar und die Bestandteile müssen, auch wenn sie in unterschiedlichen Prozessen hergestellt sind und von unterschiedlichen Lieferanten stammen, zusammenpassen.

Erfolg und Wohlstand

Die Erfolge der industriellen Fertigung haben uns – vor allem in der westlichen Welt – den Wohlstand gebracht, und zwar neben einer üppigen Grundversorgung
• die großen Möglichkeiten der Freizeitgestaltung,
• die medizinischen Versorgungen,
• die hohe Lebenserwartung,
• die große Mobilität und
• die weltweite Kommunikation.

Der industriellen Fertigung verdanken wir z. B. die Verkehrsmittel, wie z. B. Auto, Bahn, Flugzeug, die elektrische Stromversorgung, die Haushaltsgeräte u. v. m., also fast alle Dinge unseres täglichen Lebens. Ohne eine industrielle Fertigung wären wir auf der Stufe der ärmsten Entwicklungsländer mit Hunger und Not.
1.2 Die Fertigungsverfahren im Überblick

Die Fertigungsverfahren werden eingeteilt nach den Verfahren wie man Werkstücke formt und/oder die Stoffeigenschaften ändert. Kennzeichnend ist dabei, wie der Zusammenhalt der stofflichen Bestandteile eines Werkstücks sich darstellt.

Man unterscheidet Fertigungsverfahren, welche die Bauteilform dadurch bestimmen, dass stofflicher Zusammenhalt

• geschaffen wird, → Urformen
• beibehalten wird, → Umformen
• vermindert wird, → Trennen
• vermehrt wird, → Fügen

Neben formbildend bzw. formändernd können die Fertigungsverfahren auch die Stoffeigenschaften verändern, z.B. durch Gefügeveränderungen (Umlagern von Stoffteilchen), durch Nitrieren (Einbringen von Stoffteilchen) oder durch Entkohlen (Aussondern von Stoffteilchen).

Entsprechend zu den Merkmalen des stofflichen Bauteilentstehens werden die Fertigungsverfahren in sechs Hauptgruppen nach DIN 8580 eingeteilt (Bild 1, folgende Seiten).

Neu sind hierbei die additiven Verfahren, bei denen einzelne Volumenelemente oder dünne Schichten aufeinander gesetzt werden, z.B. durch 3D-Druck, Lasersintern oder durch Stereolithographie (Bild 1).

2. Umformen ist das Fertigen eines festen Körpers durch bildsames, nämlich plastisches Ändern der Form eines festen Körpers. Dabei bleibt der Stoffzusammenhalt erhalten.

Der Umformvorgang bezieht sich nicht immer auf das ganze Werkstück. Er kann sich auf Teilebereiche eines Werkstücks beziehen oder auch lokal fortschreitend sein, z.B. beim Walzen. Neben dem Ziel der Gestaltänderung verfolgt man beim Umformen auch das Ziel die Oberflächenbeschaffenheit und die Werkstoffeigenschaften zu verändern.

Tabelle 1: Urformen (Hauptgruppe 1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerkraftgießen</td>
<td>Press-. Blasformen</td>
<td>Beton- und Gipsgießen</td>
<td>Pressen</td>
<td>Spanplatten-herstellen</td>
<td>Abscheiden in eine Form</td>
<td>Abscheiden in eine Form (elektrolytisch)</td>
</tr>
<tr>
<td>Druckgießen</td>
<td>Spritzgießen</td>
<td>Porzellan und Keramikgießen</td>
<td>Sandformen</td>
<td>Faserplatten-herstellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schleudern</td>
<td>Spritz- und Strangpressen</td>
<td>Thermisches Spritzen</td>
<td>Papier-herstellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stranggießen</td>
<td>Ziehformen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schäumen</td>
<td>Kalandrieren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tauchformen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Umformen (Hauptgruppe 2)

<table>
<thead>
<tr>
<th>Druckumformen</th>
<th>Zugdruckumformen</th>
<th>Zugumformen</th>
<th>Biegeumformen</th>
<th>Schubumformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walzen</td>
<td>Durchziehen</td>
<td>Längen</td>
<td>Biegeumformen mit Geradliniger Bewegung</td>
<td>Verschieben mit geradliniger Bewegung</td>
</tr>
<tr>
<td>Freiformen</td>
<td>Tiefziehen</td>
<td>Weiten</td>
<td>Biegeumformen mit drehender Bewegung</td>
<td>Verschieben mit drehender Bewegung</td>
</tr>
<tr>
<td>Gesenkformen</td>
<td>Drücken</td>
<td>Tiefen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eindrücken</td>
<td>Kragenziehen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Druckdrücken</td>
<td>Knickbauchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umformstrahlen</td>
<td>Innenhochdruck-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weitstauchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächen-</td>
<td>Durchziehen</td>
<td>Längen</td>
<td>Biegeumformen mit Geradliniger Bewegung</td>
<td>Verschieben mit geradliniger Bewegung</td>
</tr>
<tr>
<td>veredelungs-</td>
<td>Tiefen</td>
<td>Weiten</td>
<td>Biegeumformen mit drehender Bewegung</td>
<td>Verschieben mit drehender Bewegung</td>
</tr>
<tr>
<td>strahlen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Trennen (Hauptgruppe 3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sichern</td>
<td>Drehen</td>
<td>Schleifen mit Rotierendem Werkzeug</td>
<td>Thermisches Abtragen</td>
<td>Auseinandernehmen</td>
<td>mechanisch</td>
</tr>
<tr>
<td>Messerschneiden</td>
<td>Bohren, Senken, Reiben</td>
<td>Bandschleifen</td>
<td>Chemisches Abtragen</td>
<td>Löschen kraftschlüssiger Verbindungen</td>
<td>strömungstechnisch</td>
</tr>
<tr>
<td>Beißschneiden</td>
<td>Fräsen, Hobeln, Stoßen</td>
<td>Hubschleifen</td>
<td>Elektrochem. Abtragen</td>
<td>zerlegen gefügter Teile</td>
<td>chemisch</td>
</tr>
<tr>
<td>Spalten</td>
<td>Räumen</td>
<td>Honen</td>
<td></td>
<td>Ablöten</td>
<td>thermisch</td>
</tr>
<tr>
<td>Reissen</td>
<td>Sägen</td>
<td>Läppen</td>
<td></td>
<td></td>
<td>mit Lösungsmitteln</td>
</tr>
<tr>
<td>Brechen</td>
<td>Feilen, Raspeln</td>
<td>Strahlspanen</td>
<td></td>
<td></td>
<td>durch Strahlen</td>
</tr>
<tr>
<td></td>
<td>Bürstenspanen</td>
<td>Gleitspanen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schaben, Meißeln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 1: Fügen (Hauptgruppe 4)

<table>
<thead>
<tr>
<th>Zusammen- setzen</th>
<th>Füllen</th>
<th>An- und Einpressen</th>
<th>Urformen</th>
<th>Umformen</th>
<th>Schweißen</th>
<th>Löten</th>
<th>Kleben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auflegen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufsetzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schichten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einlegen, Einsetzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einschieben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einhängen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einspreizen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einfüllen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tränken, Imprägnieren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schrauben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klemmen, Klammer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einpresen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nageln, Verstifen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgießen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einbetten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergießen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanisieren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umformen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blech Umformen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nieten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressschweißen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmelzschweißen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weichlöten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartlöten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>physik. abbindend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chem. abbindend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Beschichten (Hauptgruppe 5)

<table>
<thead>
<tr>
<th>Aus flüssigem Zustand</th>
<th>Aus breigem Zustand</th>
<th>Mit Körnern oder Pulvern</th>
<th>Durch Schweßen</th>
<th>Durch Löten</th>
<th>Durch Gase od. Dämpfe</th>
<th>Durch Ionisieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmelztauchen</td>
<td>Lackieren</td>
<td>Färben</td>
<td>Verputzen</td>
<td>Auftraglöten</td>
<td>Vakuumbedampfen</td>
<td>galvanisch</td>
</tr>
<tr>
<td>Spachteln</td>
<td></td>
<td>Wirbelsintern</td>
<td>Spritzen</td>
<td>Auftraghartlöten</td>
<td>Vakuumbestäuben</td>
<td>chemisch</td>
</tr>
<tr>
<td>Putzen, Verputzen</td>
<td></td>
<td>elektrostatisch Spritzen</td>
<td>thermisch Spritzen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schmelzauftragsschweißen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auftragweichlöten</td>
<td>Auftraghartlöten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vakuumbedampfen</td>
<td>Vakuumbestäuben</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Stoffeigenschaft ändern (Hauptgruppe 6)

<table>
<thead>
<tr>
<th>Verfestigen durch Umformen</th>
<th>Wärmebehandeln</th>
<th>Thermomech. Behandeln</th>
<th>Sintern, Brennen</th>
<th>Magnetisieren</th>
<th>Photochemisch Behandeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>mech. Strahlen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziehen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmieden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glühen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Härten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isotherm. Umwandeln</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergüten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiefkühlen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomechanisch Behandeln</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austeniformhärten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heißisostatisches Pressen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgießen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einbetten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergießen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingalvanisieren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umformen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestrahlen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Laserstrahlen | Molekularstrahlen | Ionenstrahlen |
1.3 Entwicklungsphasen der industriellen Technik

Erste industrielle Revolution: Kraftmaschinen

Zweite industrielle Revolution: Fließband

Dritte industrielle Revolution: Elektronik und Computer

Eingeführt sind seither die CAx-Systeme:

- **CAD**-Systeme (Design) für das Zeichnen und Konstruieren (Bild 4),
- **CAM**-Systeme (Manufacturing) für den Herstellungsprozess,
- **CAQ**-Systeme (Quality-Assurance) für das Qualitätsprüfung und
- **CIM** (Computerintegrierte Fertigung) für die Gesamtheit der Produktionskette.
1.3 Entwicklungsphasen der industriellen Technik

Vierte industrielle Revolution: Internet

Die vierte industrielle Revolution ist etwa seit dem Jahr 2000 geprägt durch die Allgegenwart des Internets.

Mithilfe des Internets werden
• Bankgeschäfte abgewickelt,
• Steuererklärungen gemacht,
• telefoniert,
• Waren geordert und zum Kunden gelenkt,
• Produktionsprozesse angestoßen, gesteuert und überwacht.

Ein großflächiger und ein länger anhaltender Ausfall des Internets wäre eine große, lebensbedrohende Katastrophe.

Die Integration internetfähiger bzw. kommunikationsfähiger Elektronik in die Dinge des Alltags, z.B. in Mobiltelefone, in Kameras, in Fahrzeuge und in Maschinen und Anlagen ermöglicht eine allumfassende Information und das Ingangsetzen selbsttätig ablaufender Prozesse (Bild 1).

Die Vernetzung von physikalisch-technischen Systemen mit virtuellen, nämlich programmierten Prozessen wird zum „Internet der Dinge und Dienste“ und kennzeichnet die vierte industrielle Revolution.

Mit Industrie 4.0 wird die vierte industrielle Revolution, nämlich die totale digitale Vernetzung der Maschinen, Anlagen und Produkte sowie der zugehörigen Dienste eingeleitet.

Gefahren bei Industrie 4.0

Steuerungsgeräte von Produktionsmaschinen (SPS) waren lange Zeit eine eigene Welt mit eigener, firmenspezifischer Software und Hardware, mit dem Problem mit Konkurrenzprodukten nicht kompatibel und kommunikationsfähig zu sein. Inzwischen sind diese Geräte über Standards vernetzt. Das hat Standardisierungsvorteile, das hat

alle Vorteile der Fernwartung und Fernsteuerung aber es hat den entscheidenden Nachteil üblichen Hacker-Angriffsmethoden ausgesetzt zu sein.

IT-Systeme allgemeiner Art werden häufig mit Anlagensteuerungen verbunden oder in diese integriert. Hier ist eine hinreichende Segregation (Trennung) unerlässlich, um zu verhindern, dass sich Schadprogramme und Ausspähungen über Teilsystemgrenzen hinweg ausbreiten können.

1 Internet von engl. internetwork = Zwischennetzwerk, miteinander verbundene Netze
2 engl. maleware, Kunstwort aus engl. malicious = bösartig und software
1.4 Industrie 4.0

Industrie 4.0 ist ein Zukunftsprojekt der deutschen Bundesregierung mit dem die informationstechnische Vernetzung insbesondere der Produktions-technik vorangetrieben wird.

Ziel von Industrie 4.0 sind intelligente (smart) Fabriken. Diese zeichnen sich aus durch:
- Wandlungsfähigkeit,
- Ressourceneffizienz,
- Ergonomie und
- Kundenorientierung.

Die heute übliche Produktionsplanung und -steuerung mit der Vorgabe von Arbeitsschritten könnte abgelöst werden durch die Werkstücke, die Abläufe selbst organisieren. Rohlinge, Fabrikate und Produkte werden „intelligent“. Sie machen sich ihre Prozesse selbst.

Die Produkte sind mit speicherfähigen RFID's versehen (Bild 1) oder tragen zumindest eingeprägte Codes (Bild 2) zur Kennung. Die Produktionsmittel und Logistikkomponenten sind als „embedded systems“ konzipiert (Bild 2) und prinzipiell internetfähig.

1 engl. smart = geschickt
2 engl. radio-frequency identification = drahtlose Identifizierung mithilfe elektromagnetischer Wellen
3 engl. embedded = eingebettet
Cyber-Physische-Systeme (CPS)

Eine zunehmende Bedeutung haben die Cyber-Physical-Systems\(^1\) (CPS). Sie ermöglichen durch eine angehängte Kommunikationstechnik die Verbindung von eingebetteten Systemen untereinander und mit dem Internet. Dabei wird die frühere hierarchische und lokal konzentrierte Struktur aufgelöst (Bild 1).

CPS sind die technologische Grundlage für Industrie 4.0. Die besondere Eigenschaft der CPS ist, dass CPS als smart d.h. geschickt und intelligent empfunden werden. So leiten sich daraus unmittelbar Produktnamen ab, wie z.B. Smartphone oder Smart-TV für internetfähige Mobiltelefone bzw. Fernsehgeräte.

Die Entwicklungen der Cyber-Physischen Systeme beschränken sich nicht nur auf Einzelprodukte sondern gelten auch für Großsysteme wie z.B.:

Smart Factory\(^2\): Mit IKT (Informations- und Kommunikationstechnik) vernetzte Unternehmen, Maschinen, Anlagen, Zulieferer und Logistik, um auf Kundenwünsche schnell und flexibel reagieren zu können (Bild 2).

2 smart factory = intelligente (kluge) Fabrik
1.5 Aktuelle Ziele und Entwicklungen

1.5.1 Werkzeugmaschinen

Die Werkzeugmaschine ist das Produktionsmittel, das die Leistungsfähigkeit einer Fertigung aus technischer Sicht am meisten bestimmt. Für die wichtigsten Fertigungsverfahren wie Drehen, Fräsen, Schleifen, Warm- und Kaltumformen wurden die zugehörigen Maschinen schon im vorletzten Jahrhundert entwickelt und sind uns als Drehmaschine, Fräsmaschine, Schleifmaschine, Schmiedehammer und Exzenterpresse bekannt. Die Maschinen von heute sind in den Grundzügen gleichgeblieben, geändert haben sich aber im Trend folgende Komponenten:

Wie die Maschinenachsen sich bewegen müssen, wird über eine numerische Steuerung mittels Computer (CNC-Technik) erzielt. Zur Bewegungssteuerung gehören neben der Relativbewegung zwischen Werkzeug und Werkstück unterschiedlich die übliche *serielle Kinematik* und die neuartigeobile *parallelkenematik* (Bild 2).

Bild 1: Linearmotor als Direktantrieb für einen Maschinentisch

Tabelle 1: Linearmotor vs. Kugelgewindetrieb (KGT)

<table>
<thead>
<tr>
<th>Vorschubantrieb</th>
<th>Linearmotor</th>
<th>KGT**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschwindigkeit</td>
<td>höher (+++)</td>
<td>geringer (+)</td>
</tr>
<tr>
<td>Beschleunigung/Rück</td>
<td>höher (+++)</td>
<td>geringer (+)</td>
</tr>
<tr>
<td>Vorschubkraft</td>
<td>mäßig (--)</td>
<td>hoch (+++)</td>
</tr>
<tr>
<td>Genauigkeit</td>
<td>besser(+)</td>
<td>schlechter (--)</td>
</tr>
<tr>
<td>Verfahrweg</td>
<td>beliebig (+++)</td>
<td>bis ca. 4 m (--)</td>
</tr>
<tr>
<td>Rückwirkung auf Maschinengestell</td>
<td>stärker (---)</td>
<td>geringer (+)</td>
</tr>
<tr>
<td>Bandbreite/Kv-Faktor</td>
<td>höher (+)</td>
<td>niederer (--)</td>
</tr>
<tr>
<td>Wartung/Service</td>
<td>geringer (+++)</td>
<td>höher (--)</td>
</tr>
<tr>
<td>Energieeffizienz</td>
<td>schlechter (--)</td>
<td>meist besser (+)</td>
</tr>
<tr>
<td>Maschinenkosten</td>
<td>höher (--)</td>
<td>meist niederer (+)</td>
</tr>
<tr>
<td>Engineering/Montage</td>
<td>geringer (+)</td>
<td>höher (--)</td>
</tr>
</tbody>
</table>

** Kugelgewindetrieb mit Drehstromsynchronmotor

Bild 2: Serielle Maschinenkinematik und parallele Maschinenkinematik
Bei der seriellen Kinematik sind die Maschinenachsen aufeinanderfolgend angeordnet. Bei der Parallelkinematik tragen alle gemeinsam das Werkzeug.

- **CFK-Komponenten**
 Werkzeugtragende Maschinenschlitzen und Spannfutter werden z.B. mit einem CFK-Basiskörper (Bild 1) ausgestattet und werden dadurch bis zu 70% leichter. Daraus resultieren kürzere Prozesszeiten und geringer Energieverbrauch.

- **5-Achsen-Mikro-Fräs-Schleif-Maschinen**

Von Mikrofräsmaschinen erwartet man stets sehr hohe Genauigkeiten mit einer Positionsunsicherheit von < 5 µm. So sind die Wegmesssysteme üblicherweise direktmessend mit Positionsauflösungen (nach der Interpolation) in den 10-nm-Bereichen.

Aufbau. Die 5-Achsen-Maschine (Bild 2) erlaubt Rundumbearbeitung beliebiger Freiformflächen in einer Aufspannung, z.B. von Zahnkronen, auch mit Hinterschnitten.

Bei Nassbearbeitung wird eine Wasserwand um den Fräser gebildet (Bild 4). Eine Abflusseinrichtung mit Filterung nimmt Späne und Schleifstaub auf. Die Spindel ist eine Hochfrequenzspindel mit der Maximaldrehzahl 60000 min⁻¹.

1.5.2 Fertigungsverfahren

Hartdrehen oder Schleifen

Bei der Herstellung von Bauteilen mit gehärteter Oberfläche ist die übliche Bearbeitungsfolge:
- spanende Bearbeitung im weichen Werkstoffzustand (Weichbearbeitung), dann
- Wärmebehandlung (Härten), dann
- Schleifen und schließlich
- Honen.

Die neue Fertigungsfolge ersetzt das teure Schleifen und Honen. So ergibt sich die Arbeitsfolge:
- Weichbearbeitung,
- Wärmebehandlung,
- Präzisions-Hartdrehen (Bild 1).

Man erzielt dabei gleichwertige Rauigkeitswerte (z.B. Rautiefe $R_z = 0,7 \, \mu m$ und Mittelrauwert $Ra = 0,1 \, \mu m$) und auch gleichwertige Bauteileigenschaften, z.B. hinsichtlich der Dauerfestigkeit und Schwingfestigkeit. Neue Drehschleifmaschinen ermöglichen auf einer Maschine die Hartbearbeitung durch Drehen oder Schleifen und beides in Kombination (Bild 1).

Hochgeschwindigkeitsfräsen oder Senkerodieren

Die Alternative ist das direkte Fräsen der Form mit hohen Vorschubgeschwindigkeiten (Bild 2) und zum Schlichten mit ganz dünnen Fräsern, z.B.: mit 0,4 mm Durchmesser (Bild 3). Man verwendet hierbei meist ein 3-achsiges Fräsen mit 5-achsigen Fräsmaschinen. Dadurch können die Fräser in beliebiger Raumorientierung arbeiten. So ist eine gute Zugänglichkeit auch bei stark zerklüfteten Formen gegeben und die Fräser können kurz eingespannt werden.

Nur bei sehr tiefen, schmalen Kavitäten (Höhlen) ist das Senkerodieren unumgänglich. Dies ist der Fall z.B. bei sehr dünnen Rippen, da dann die Negativform tiefe schmale und steilwandige Schlitzte aufweist.