<table>
<thead>
<tr>
<th>Regel</th>
<th>Formel für die Ableitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstantenregel</td>
<td>(c' = 0) ((c) const)</td>
</tr>
<tr>
<td>Faktorregel</td>
<td>((cu)' = cu') ((c) const)</td>
</tr>
<tr>
<td>Summenregel</td>
<td>((u \pm v)' = u' \pm v')</td>
</tr>
<tr>
<td>Produktregel für zwei Funktionen</td>
<td>((uv)' = u'v + uv')</td>
</tr>
<tr>
<td>Produktregel für (n) Funktionen</td>
<td>((u_1u_2 \cdots u_n)' = \sum_{i=1}^{n} u_1 \cdots u_i' \cdots u_n)</td>
</tr>
<tr>
<td>Quotientenregel</td>
<td>(\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}) ((v \neq 0))</td>
</tr>
<tr>
<td>Kettenregel für zwei Funktionen</td>
<td>(y = u(v(x)):\quad y' = \frac{du}{dv} \frac{dv}{dx})</td>
</tr>
<tr>
<td>Kettenregel für drei Funktionen</td>
<td>(y = u(v(w(x))):\quad y' = \frac{du}{dv} \frac{dv}{dw} \frac{dw}{dx})</td>
</tr>
<tr>
<td>Potenzregel</td>
<td>((a^u)' = \alpha a^{u-1}u') ((\alpha \in \mathbb{R}, \alpha \neq 0)) speziell: (\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}) ((u \neq 0))</td>
</tr>
<tr>
<td>Logarithmische Differenziation</td>
<td>(d(ln y(x))) (\frac{dx}{dx} = 1) (y' \implies y' = y \frac{d(ln y)}{dx}) speziell: ((u^v)' = u^v \left(v' \ln u + \frac{vu'}{u}\right)) ((u > 0))</td>
</tr>
<tr>
<td>Differenziation der Umkehrfunktion</td>
<td>(\varphi) inverse Funktion zu (f), d. h. (y = f(x) \iff x = \varphi(y)): (f'(x) = \frac{1}{\varphi'(y)}) oder (\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}})</td>
</tr>
<tr>
<td>Implizite Differenziation</td>
<td>(F(x, y) = 0:\quad F_x + F_y y' = 0) oder (y' = \frac{F_x}{F_y} \left(F_x = \frac{\partial F}{\partial x}, F_y = \frac{\partial F}{\partial y}; F_y \neq 0 \right))</td>
</tr>
<tr>
<td>Ableitung in Parameterdarstellung</td>
<td>(x = x(t), y = y(t)) ((t) Parameter): (y' = \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}) ((\dot{x} = \frac{dx}{dt}, \dot{y} = \frac{dy}{dt}))</td>
</tr>
<tr>
<td>Ableitung in Polarkoordinaten</td>
<td>(\rho = \rho(\varphi)): (x = \rho(\varphi) \cos \varphi) (y = \rho(\varphi) \sin \varphi) (y' = \frac{dy}{dx} = \frac{\dot{\rho} \sin \varphi + \rho \cos \varphi}{\dot{\rho} \cos \varphi - \rho \sin \varphi}) (Winkel (\varphi) als Parameter) (\dot{\rho} = \frac{dx}{d\varphi})</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Arithmetik</td>
</tr>
<tr>
<td>2</td>
<td>Funktionen und ihre Darstellung</td>
</tr>
<tr>
<td>3</td>
<td>Geometrie</td>
</tr>
<tr>
<td>4</td>
<td>Lineare Algebra</td>
</tr>
<tr>
<td>5</td>
<td>Algebra und Diskrete Mathematik</td>
</tr>
<tr>
<td>6</td>
<td>Differenzialrechnung</td>
</tr>
<tr>
<td>7</td>
<td>Unendliche Reihen</td>
</tr>
<tr>
<td>8</td>
<td>Integralrechnung</td>
</tr>
<tr>
<td>9</td>
<td>Differenzialgleichungen</td>
</tr>
<tr>
<td>10</td>
<td>Variationsrechnung</td>
</tr>
<tr>
<td>11</td>
<td>Lineare Integralgleichungen</td>
</tr>
<tr>
<td>12</td>
<td>Funktionalanalyse</td>
</tr>
<tr>
<td>13</td>
<td>Vektoranalyse und Feldtheorie</td>
</tr>
<tr>
<td>14</td>
<td>Funktionentheorie</td>
</tr>
<tr>
<td>15</td>
<td>Integraltransformationen</td>
</tr>
<tr>
<td>16</td>
<td>Wahrscheinlichkeitsrechnung und mathematische Statistik</td>
</tr>
<tr>
<td>17</td>
<td>Dynamische Systeme und Chaos</td>
</tr>
<tr>
<td>18</td>
<td>Optimierung</td>
</tr>
<tr>
<td>19</td>
<td>Numerische Mathematik</td>
</tr>
<tr>
<td>20</td>
<td>Computeralgebrasysteme – Beispiel Mathematica</td>
</tr>
<tr>
<td>21</td>
<td>Tabellen</td>
</tr>
<tr>
<td>22</td>
<td>Literatur</td>
</tr>
</tbody>
</table>

Stichwortverzeichnis: 1177
Taschenbuch der Mathematik

von
I. N. Bronstein
K. A. Semendjajew
G. Musiol
H. Mühlig

10., überarbeitete Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG
Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 56726 (Mit Multiplattform-CD-ROM DeskTop Bronstein)
Europa-Nr.: 56702 (Ohne Multiplattform-CD-ROM DeskTop Bronstein)
Im Auftrag des Verlages Harri Deutsch erarbeitete und erweiterte Lizenzausgabe der bis 1977 erschienenen russischen Orginalausgabe:
I. N. Bronstein, K. A. Semendjajew: Taschenbuch der Mathematik für Ingenieure und Studenten
©FIZMATLIT, Moskau

10., überarbeitete Auflage 2016, 2018
Druck 5 4 3 2

ISBN 978-3-8085-5790-7 (Mit Multiplattform-CD-ROM DeskTop Bronstein)

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwendung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

Der Inhalt des Werkes wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung.

© 2016 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten
http://www.europa-lehrmittel.de
Satz: Prof. Dr. G. Musiol, 01127 Dresden
Umschlaggestaltung: braunwerbeagentur, 42477 Radevormwald
Druck: CPI | Ebner & Spiegel, 89075 Ulm
Vorwort zur zehnten deutschen Auflage

Dresden, im November 2015
Prof. Dr. Gerhard Musiol Prof. Dr. Heiner Mühlig

Vorwort zur neunten deutschen Auflage

Dresden, im August 2013
Prof. Dr. Gerhard Musiol Prof. Dr. Heiner Mühlig

Vorwort zur achten deutschen Auflage

Ein Anliegen bei der Vorbereitung der 8. deutschen Auflage war auch darauf gerichtet, neueren Ansprüchen gerecht zu werden, die sich insbesondere aus der Korrespondenz mit Lesern, Fachkollegen und Koautoren ergeben hatten. Im Gefolge sind eine Reihe kleinerer Änderungen und Ergänzungen entstanden, darunter neue, instruktive Beispiele.

Daneben galt das Augenmerk der weiteren Verbesserung der Verständlichkeit und der Anschaulichkeit.

Dem Verlag Harri Deutsch, insbesondere Herrn Dipl.-Phys. Klaus Horn, danken wir für die seit vielen Jahren bestehende fruchtbare Zusammenarbeit.

Dresden, im März 2012

Prof. Dr. Gerhard Musiol
Prof. Dr. Heiner Mühlig

Aus dem Vorwort zur siebten Auflage

Für die Neubearbeitung des BRONSTEIN (1992) hatten sich der Verlag Harri Deutsch und die neuen Herausgeber und Autoren G. Musiol und H. Mühlig im Vergleich zur ursprünglich zugrunde liegenden 3. russischen Auflage die Aufgabe gestellt, diejenigen Gebiete der Mathematik stärker zu betonen bzw. neu einzubringen, die im Hinblick auf die zunehmende mathematische Modellierung und mathematische Durchdringung technischer und naturwissenschaftlicher Prozesse sowie die Nutzung von Computern an Bedeutung gewonnen hatten. Dementsprechend wurden in die ersten Auflagen u. a. die folgenden Kapitel bzw. Abschnitte aufgenommen:

Auch klassische Gebiete erfuhren Ergänzungen:

Das Kapitel „Geometrie“ z. B. wurde durch „Geodätische Anwendungen“ der Trigonometrie und durch ein ausführliches Unterkapitel „Sphärische Trigonometrie“ ergänzt; in das Kapitel „Funktionentheorie“

In einzelnen Kapiteln wurden Formelübersichten in tabellarischer Form aufgenommen (besonders zur Geometrie, zur Differenzial- und Integralrechnung und zur Vektoranalysis und Feldtheorie), die das praktische Arbeiten erleichtern.

Der Abschnitt „Evolutionsstrategien in der nichtlinearen Optimierung“ wurde erweitert und unterstreicht damit die allgemeine Bedeutung dieser Optimierungsstrategie.

Das Kapitel „Numerische Mathematik“ ergänzt die wichtigsten numerischen Aufgaben durch ihre Beschreibung und Lösung in den Computeralgebrasystemen Matlab, Mathematica und Maple.

Allen Lesern und Fachkollegen, die mit ihren Stellungnahmen, Bemerkungen und Anregungen zu den vorangegangenen Auflagen des Buches die Überarbeitung erleichtert haben, möchten wir an dieser Stelle unseren herzlichen Dank sagen. Dem Verlag Harri Deutsch danken wir für die nunmehr schon traditionell gewordene effektive Zusammenarbeit.

Dresden, im März 2008

Prof. Dr. Gerhard Musiol
Prof. Dr. Heiner Mühlig

Aus dem Vorwort zur Neubearbeitung des „Bronstein“

Der „BRONSTEIN“ ist im deutschsprachigen Raum für Generationen von Ingenieuren und Naturwissenschaftlern und darüber hinaus für viele, die in Ausbildung und Beruf mit Anwendungen der Mathematik befasst sind, zu einem festen Begriff geworden. Warum also eine Neubearbeitung auf der Basis der letzten russischen Ausgabe*, die bis 1977 erschien?

Abgesehen von verlagsrechtlichen Gründen wird mit der vorliegenden Neubearbeitung vor allem das Ziel verfolgt, dem „BRONSTEIN“ einen zeitgerechten praxisnahen Bezug zu geben, wie ihn zahlreiche befragte Nutzer sich wünschen.

Besonderer Dank gilt den russischen Originalverlag FIZMATLIT und den Rechtsnachfolgern der Originalautoren dafür, dass sie die Zustimmung zur notwendigen Anpassung an die heutigen Ansprüche des Nutzerkreises und der damit verbundenen freien Überarbeitung gaben.

Dresden, im Juni 1993

Prof. Dr. Gerhard Musiol
Prof. Dr. Heiner Mühlig

*Der Neuübersetzung des russischsprachigen Originals liegt die 3. Auflage (Moskau 1953) zu Grunde.
Koautoren

Einige Kapitel und Abschnitte sind in Zusammenarbeit mit Koautoren entstanden.

<table>
<thead>
<tr>
<th>Kapitel bzw. Abschnitt</th>
<th>Koautor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphärische Trigonometrie (3.4.1 bis 3.4.3.3)</td>
<td>Dr. H. Nickel †, Dresden</td>
</tr>
<tr>
<td>Sphärische Kurven (3.4.3.4)</td>
<td>Prof. L. Marsolek, Berlin</td>
</tr>
<tr>
<td>Geometrische Transformationen, Koordinatentransformationen, Planare Projektionen (3.5.4, 3.5.5)</td>
<td>Dr. I. Steinert, Düsseldorf</td>
</tr>
<tr>
<td>Quaternionen und Anwendungen (4.4), Logik (5.1), Mengenlehre (5.2), Klassische Algebraische Strukturen (5.3), Anwendungen von Gruppen (außer 5.3.4, 5.3.5.4 bis 5.3.5.6), Ringe und Körper (5.3.7), Vektorräume (5.3.8), Boolean'sche Algebra und Schaltalgebra (5.7), Universal Algebra (5.6), Darstellung von Gruppen (5.3.4), weitere Anwendungen von Gruppen (5.3.5.4 bis 5.3.5.6)</td>
<td>PD Dr. S. Bernstein, Freiberg (Sachsen)</td>
</tr>
<tr>
<td>Lie–Gruppen und Lie–Algebren (5.3.6)</td>
<td>Dr. J. Brunner, Dresden</td>
</tr>
<tr>
<td>Zahlentheorie, Kryptologie, Graphen (5.4, 5.5, 5.8)</td>
<td>Prof. Dr. R. Reif, Dresden</td>
</tr>
<tr>
<td>Fuzzy–Logik (5.9)</td>
<td>Prof. Dr. P. Ziesche, Dresden</td>
</tr>
<tr>
<td>Wichtige Formeln für die Sphärischen Bessel–Funktionen (9.1.2.5, 2.5)</td>
<td>Prof. Dr. P. Ziesche, Dresden</td>
</tr>
<tr>
<td>Statistische Interpretation der Wellenfunktion (9.2.4.4)</td>
<td>Prof. Dr. R. Reif, Dresden</td>
</tr>
<tr>
<td>Nichtlineare partielle Differentialgleichungen: Solitonen, periodische Muster und Chaos (9.2.5)</td>
<td>Dr. J. Brand, Dresden</td>
</tr>
<tr>
<td>Nichtlineare SCHRÖDINGER–Gleichung, Lösungen (9.2.5.3.2)</td>
<td>Dr. I. Steinert, Düsseldorf</td>
</tr>
<tr>
<td>Integralgleichungen (11)</td>
<td>Prof. Dr. M. Weber, Dresden</td>
</tr>
<tr>
<td>Funktionalanalysis (12)</td>
<td>Dr. N. M. Fleischer †, Moskau</td>
</tr>
<tr>
<td>Elliptische Funktionen (14.6)</td>
<td>Prof. Dr. V. Reitmann, St. Petersburg</td>
</tr>
<tr>
<td>Dynamische Systeme und Chaos (17)</td>
<td>Dr. I. Steinert, Düsseldorf</td>
</tr>
<tr>
<td>Optimierung (18)</td>
<td>Prof. Dr. G. Flach, Dresden</td>
</tr>
<tr>
<td>Nutzung von Computern: (19.8.1, 19.8.2), Interaktive Systeme: Mathematica (19.8.4.2), Maple (19.8.4.3), Computeralgebrasysteme – Beispiel Mathematica (20)</td>
<td>PD Dr. B. Mulansky, Clausthal</td>
</tr>
<tr>
<td>Interaktive Systeme: Matlab (19.8.4.1)</td>
<td>Dr. J. Tóth, Budapest</td>
</tr>
<tr>
<td>Computeralgebrasysteme – Beispiel Mathematica (20): Anpassung an Mathematica 10</td>
<td></td>
</tr>
</tbody>
</table>

Zusätzliche Kapitel mit Koautoren in der CD–ROM.

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Koautor</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIE–Gruppen (5.3.5), LIE–Algebren (5.3.6)</td>
<td>Prof. Dr. R. Reif, Dresden</td>
</tr>
<tr>
<td>Nichtlineare Partielle Differentialgleichungen: Inverse Streutheorie (Methoden in Analogie zur FOURIER–Methode) (9.2.6)</td>
<td>Dr. B. Rumpf, Dresden</td>
</tr>
<tr>
<td>Mathematische Grundlagen der Quantenmechanik (21)</td>
<td>Prof. Dr. A. Buchleitner, PD Dr. M. Tiersch, Dr. Th. Wellens, Freiburg</td>
</tr>
<tr>
<td>Quantencomputer (22)</td>
<td>Prof. Dr. A. Buchleitner, PD Dr. M. Tiersch, Dr. Th. Wellens, Freiburg</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

1 Arithmetik 1
 1.1 Elementare Rechenregeln 1
 1.1.1 Zahlen .. 1
 1.1.1.1 Natürliche, ganze und rationale Zahlen 1
 1.1.1.2 Irrationale und transzendentene Zahlen 1
 1.1.1.3 Reelle Zahlen 1
 1.1.1.4 Kettenbrüche 3
 1.1.1.5 Kommensurabilität 4
 1.1.2 Beweismethoden 5
 1.1.2.1 Direkter Beweis 5
 1.1.2.2 Indirekter Beweis oder Beweis durch Widerspruch 5
 1.1.2.3 Vollständige Induktion 5
 1.1.2.4 Konstruktiver Beweis 6
 1.1.3 Summen und Produkte 6
 1.1.3.1 Summen 6
 1.1.3.2 Produkte 7
 1.1.4 Potenzen, Wurzeln, Logarithmen 8
 1.1.4.1 Potenzen 8
 1.1.4.2 Wurzeln 8
 1.1.4.3 Logarithmen 9
 1.1.4.4 Spezielle Logarithmen 9
 1.1.5 Algebraische Ausdrücke 10
 1.1.5.1 Definitionen 10
 1.1.5.2 Einteilung der algebraischen Ausdrücke 11
 1.1.6 Ganzrationale Ausdrücke 11
 1.1.6.1 Darstellung in Form eines Polynoms 11
 1.1.6.2 Zerlegung eines Polynoms in Faktoren 11
 1.1.6.3 Spezielle Formeln 12
 1.1.6.4 Binomischer Satz 12
 1.1.6.5 Bestimmung des größten gemeinsamen Teilers zweier Polynome 14
 1.1.7 Gebrochenrationale Ausdrücke 14
 1.1.7.1 Rückführung auf die einfachste Form 14
 1.1.7.2 Bestimmung des ganzrationalen Anteils 15
 1.1.7.3 Partialbruchzerlegung 15
 1.1.7.4 Umformung von Proportionen 17
 1.1.8 Irrationale Ausdrücke 17
 1.2 Endliche Reihen 19
 1.2.1 Definition der endlichen Reihe 19
 1.2.2 Arithmetische Reihen 19
 1.2.3 Geometrische Reihe 20
 1.2.4 Spezielle endliche Reihen 20
 1.2.5 Mittelwerte 20
 1.2.5.1 Arithmetisches Mittel 20
 1.2.5.2 Geometrisches Mittel 21
 1.2.5.3 Harmonisches Mittel 21
 1.2.5.4 Quadratisches Mittel 21
 1.2.5.5 Vergleich der Mittelwerte für zwei positive Größen a und b 21
<table>
<thead>
<tr>
<th>1.3</th>
<th>Finanzmathematik</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1</td>
<td>Prozentrechnung</td>
<td>22</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Prozent</td>
<td>22</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Aufschlag</td>
<td>22</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>Abschlag oder Rabatt</td>
<td>22</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Zinseszinsrechnung</td>
<td>23</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Zinsen</td>
<td>23</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Tilgungsrechnung</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3.1</td>
<td>Tilgung</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3.2</td>
<td>Gleiche Tilgungsraten</td>
<td>24</td>
</tr>
<tr>
<td>1.3.3.3</td>
<td>Gleiche Annuitäten</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Rentenrechnung</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4.1</td>
<td>Rente</td>
<td>25</td>
</tr>
<tr>
<td>1.3.4.2</td>
<td>Nachschüssig konstante Rente</td>
<td>26</td>
</tr>
<tr>
<td>1.3.4.3</td>
<td>Kontostand nach n Rentenzahlungen</td>
<td>26</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Abschreibungen</td>
<td>27</td>
</tr>
<tr>
<td>1.3.5.1</td>
<td>Abschreibungsarten</td>
<td>27</td>
</tr>
<tr>
<td>1.3.5.2</td>
<td>Lineare Abschreibung</td>
<td>27</td>
</tr>
<tr>
<td>1.3.5.3</td>
<td>Arithmetisch–degressive Abschreibung</td>
<td>28</td>
</tr>
<tr>
<td>1.3.5.4</td>
<td>Digitale Abschreibung</td>
<td>28</td>
</tr>
<tr>
<td>1.3.5.5</td>
<td>Geometrisch–degressive Abschreibung</td>
<td>28</td>
</tr>
<tr>
<td>1.3.5.6</td>
<td>Abschreibung mit verschiedenen Abschreibungsarten</td>
<td>29</td>
</tr>
<tr>
<td>1.4</td>
<td>Ungleichungen</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Reine Ungleichungen</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1.1</td>
<td>Definitionen</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1.2</td>
<td>Eigenschaften der Ungleichungen vom Typ I und II</td>
<td>30</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Spezielle Ungleichungen</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.1</td>
<td>Dreiecksungleichung für reelle Zahlen</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.2</td>
<td>Dreiecksungleichung für komplexe Zahlen</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.3</td>
<td>Ungleichungen für den absoluten Betrag der Differenz zweier Zahlen</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.4</td>
<td>Ungleichung für das arithmetische und das geometrische Mittel</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.5</td>
<td>Ungleichung für das arithmetische und das quadratische Mittel</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.6</td>
<td>Ungleichungen für verschiedene Mittelwerte zweier reeller Zahlen</td>
<td>31</td>
</tr>
<tr>
<td>1.4.2.7</td>
<td>Bernoullische Ungleichung</td>
<td>32</td>
</tr>
<tr>
<td>1.4.2.8</td>
<td>Binomische Ungleichung</td>
<td>32</td>
</tr>
<tr>
<td>1.4.2.9</td>
<td>Cauchy–Schwarzscbe Ungleichung</td>
<td>32</td>
</tr>
<tr>
<td>1.4.2.10</td>
<td>Tschebyscheffsche Ungleichung</td>
<td>32</td>
</tr>
<tr>
<td>1.4.2.11</td>
<td>Verallgemeinerte Tschebyscheffsche Ungleichung</td>
<td>33</td>
</tr>
<tr>
<td>1.4.2.12</td>
<td>Höldersche Ungleichung</td>
<td>33</td>
</tr>
<tr>
<td>1.4.2.13</td>
<td>Minkowskische Ungleichung</td>
<td>34</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Lösung von Ungleichungen 1. und 2. Grades</td>
<td>34</td>
</tr>
<tr>
<td>1.4.3.1</td>
<td>Allgemeines</td>
<td>34</td>
</tr>
<tr>
<td>1.4.3.2</td>
<td>Ungleichungen 1. Grades</td>
<td>34</td>
</tr>
<tr>
<td>1.4.3.3</td>
<td>Ungleichungen 2. Grades</td>
<td>34</td>
</tr>
<tr>
<td>1.4.3.4</td>
<td>Allgemeiner Fall der Ungleichung 2. Grades</td>
<td>35</td>
</tr>
<tr>
<td>1.5</td>
<td>Komplexe Zahlen</td>
<td>35</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Imaginäre und komplexe Zahlen</td>
<td>35</td>
</tr>
<tr>
<td>1.5.1.1</td>
<td>Imaginäre Einheit</td>
<td>35</td>
</tr>
<tr>
<td>1.5.1.2</td>
<td>Komplexe Zahlen</td>
<td>35</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Geometrische Darstellung</td>
<td>36</td>
</tr>
<tr>
<td>1.5.2.1</td>
<td>Vektor Darstellung</td>
<td>36</td>
</tr>
</tbody>
</table>
1.5.2.2 Gleichheit komplexer Zahlen .. 36
1.5.2.3 Trigonometrische Form der komplexen Zahlen 36
1.5.2.4 Exponentialform einer komplexen Zahl 37
1.5.2.5 Konjugiert komplexe Zahlen 37
1.5.3 Rechnen mit komplexen Zahlen .. 37
1.5.3.1 Addition und Subtraktion ... 37
1.5.3.2 Multiplikation .. 38
1.5.3.3 Division .. 38
1.5.3.4 Allgemeine Regeln für die vier Grundrechenarten 39
1.5.3.5 Potenzieren einer komplexen Zahl 39
1.5.3.6 Radizieren oder Ziehen der n-te Wurzel aus einer komplexen Zahl .. 39

1.6 Algebraische und transzendente Gleichungen 39
1.6.1 Umformung algebraischer Gleichungen auf die Normalform 39
1.6.1.1 Definitionen .. 39
1.6.1.2 Systeme aus n algebraischen Gleichungen 40
1.6.1.3 Scheinbare Wurzeln .. 40
1.6.2 Gleichungen 1. bis 4. Grades ... 41
1.6.2.1 Gleichungen 1. Grades (lineare Gleichungen) 41
1.6.2.2 Gleichungen 2. Grades (quadratische Gleichungen) 41
1.6.2.3 Gleichungen 3. Grades (kubische Gleichungen) 42
1.6.2.4 Gleichungen 4. Grades .. 44
1.6.2.5 Gleichungen 5. und höheren Grades 45
1.6.3 Gleichungen n-te Grades ... 45
1.6.3.1 Allgemeine Eigenschaften der algebraischen Gleichungen ... 45
1.6.3.2 Gleichungen mit reellen Koeffizienten 46
1.6.4 Rückführung transzenderter Gleichungen auf algebraische Gleichungen .. 47
1.6.4.1 Definition .. 47
1.6.4.2 Exponentialgleichungen 47
1.6.4.3 Logarithmische Gleichungen 48
1.6.4.4 Trigonometrische Gleichungen 48
1.6.4.5 Gleichungen mit Hyperbelfunktionen 48

2 Funktionen und ihre Darstellung .. 49
2.1 Funktionsbegriff .. 49
2.1.1 Definition der Funktion .. 49
2.1.1.1 Funktion .. 49
2.1.1.2 Reelle Funktion ... 49
2.1.1.3 Funktion von mehreren Veränderlichen 49
2.1.1.4 Komplexe Funktion .. 49
2.1.1.5 Weitere Funktionen .. 49
2.1.1.6 Funktionale .. 49
2.1.1.7 Funktion und Abbildung 50
2.1.2 Methoden zur Definition einer reellen Funktion 50
2.1.2.1 Angabe einer Funktion 50
2.1.2.2 Analytische Darstellung reeller Funktionen 50
2.1.3 Einige Funktionstypen ... 51
2.1.3.1 Monotone Funktionen .. 51
2.1.3.2 Beschränkte Funktionen 52
2.1.3.3 Extremwerte von Funktionen 52
2.1.3.4 Gerade Funktionen .. 52
2.1.3.5 Ungerade Funktionen .. 52
2.1.3.6 Darstellung mithilfe gerader und ungerader Funktionen 53
2.1.3.7 Periodische Funktionen ... 53
2.1.3.8 Inverse oder Umkehrfunktionen 53
2.1.4 Grenzwert von Funktionen ... 54
 2.1.4.1 Definition des Grenzwertes einer Funktion 54
 2.1.4.2 Zurückführung auf den Grenzwert einer Folge 54
 2.1.4.3 Konvergenzkriterium von Cauchy 54
 2.1.4.4 Unendlicher Grenzwert einer Funktion 55
 2.1.4.5 Linksseitiger und rechtsseitiger Grenzwert einer Funktion 55
 2.1.4.6 Grenzwert einer Funktion für x gegen unendlich 55
 2.1.4.7 Sätze über Grenzwerte von Funktionen 56
 2.1.4.8 Berechnung von Grenzwerten 56
 2.1.4.9 Größenordnung von Funktionen und Landau–Symbole 58
2.1.5 Stetigkeit einer Funktion ... 59
 2.1.5.1 Stetigkeit und Unstetigkeitsstelle 59
 2.1.5.2 Definition der Stetigkeit 60
 2.1.5.3 Häufig auftretende Arten von Unstetigkeiten 60
 2.1.5.4 Stetigkeit und Unstetigkeitspunkte elementarer Funktionen 61
 2.1.5.5 Eigenschaften stetiger Funktionen 62
2.2 Elementare Funktionen ... 63
 2.2.1 Algebraische Funktionen 63
 2.2.1.1 Ganzrationale Funktionen (Polynome) 63
 2.2.1.2 Gebrochenrationale Funktionen 63
 2.2.1.3 Irrationale Funktionen 64
 2.2.2 Transzendenten Funktionen 64
 2.2.2.1 Exponentialfunktionen 64
 2.2.2.2 Logarithmische Funktionen 64
 2.2.2.3 Trigonometrische Funktionen 64
 2.2.2.4 Inverse trigonometrische Funktionen 64
 2.2.2.5 Hyperbelfunktionen 64
 2.2.2.6 Inverse Hyperbelfunktionen 64
 2.2.3 Zusammengesetzte Funktionen 64
2.3 Polynome ... 65
 2.3.1 Lineare Funktion ... 65
 2.3.2 Quadratisches Polynom ... 65
 2.3.3 Polynom 3. Grades ... 66
 2.3.4 Polynom n–ten Grades ... 66
 2.3.5 Parabel n–ter Ordnung ... 66
2.4 Gebrochenrationale Funktionen 67
 2.4.1 Spezielle gebrochen lineare Funktion 67
 2.4.2 Gebrochenlineare Funktion 67
 2.4.3 Kurve 3. Ordnung, Typ I 68
 2.4.4 Kurve 3. Ordnung, Typ II 68
 2.4.5 Kurve 3. Ordnung, Typ III 69
 2.4.6 Reziproke Potenz .. 71
2.5 Irrationale Funktionen ... 72
 2.5.1 Quadratwurzel aus einem linearen Binom 72
 2.5.2 Quadratwurzel aus einem quadratischen Polynom 72
 2.5.3 Potenzfunktion .. 72
2.6 Exponentialfunktionen und logarithmische Funktionen 73
 2.6.1 Exponentialfunktion .. 73
 2.6.2 Logarithmische Funktionen 73
 2.6.3 Gaußsche Glockenkurve 74
2.6.4 Exponentialsumme .. 74
2.6.5 Verallgemeinerte Gaußsche Glockenkurve 75
2.6.6 Produkt aus Potenz- und Exponentialfunktion 76
2.7 Trigonometrische Funktionen (Winkelfunktionen) 77
 2.7.1 Grundlagen ... 77
 2.7.1.1 Definition und Darstellung 77
 2.7.1.2 Wertebereiche und Funktionsverläufe 79
 2.7.2 Wichtige Formeln für trigonometrische Funktionen 81
 2.7.2.1 Beziehungen zwischen den trigonometrischen Funktionen .. 81
 2.7.2.2 Trigonometrische Funktionen der Summe und der Differenz zweier Winkel (Additionstheoreme) 81
 2.7.2.3 Trigonometrische Funktionen für Winkelvielfache 82
 2.7.2.4 Trigonometrische Funktionen des halben Winkels 83
 2.7.2.5 Summen und Differenzen zweier trigonometrischer Funktionen . 83
 2.7.2.6 Produkte trigonometrischer Funktionen 83
 2.7.2.7 Potenzen trigonometrischer Funktionen 84
 2.7.3 Beschreibung von Schwingungen 84
 2.7.3.1 Problemstellung 84
 2.7.3.2 Superposition oder Überlagerung von Schwingungen 84
 2.7.3.3 Vektordiagramm für Schwingungen 85
 2.7.3.4 Dämpfung von Schwingungen 85
2.8 Zyklometrische Funktionen (Arkusfunktionen) 86
 2.8.1 Definition der zyklometrischen Funktionen 86
 2.8.2 Zurückführung auf die Hauptwerte 86
 2.8.3 Beziehungen zwischen den Hauptwerten 87
 2.8.4 Formeln für negative Argumente 88
 2.8.5 Summe und Differenz von arcsin x und arcsin y 88
 2.8.6 Summe und Differenz von arccos x und arccos y 88
 2.8.7 Summe und Differenz von arctan x und arctan y 88
 2.8.8 Spezielle Beziehungen für arcsin x, arccos x, arctan x .. 89
2.9 Hyperbelfunktionen 89
 2.9.1 Definition der Hyperbelfunktionen 89
 2.9.2 Grafische Darstellung der Hyperbelfunktionen 90
 2.9.2.1 Hyperbelsinus 90
 2.9.2.2 Hyperbelkosinus 90
 2.9.2.3 Hyperbeltangens 91
 2.9.2.4 Hyperbelkotangens 91
 2.9.3 Wichtige Formeln für Hyperbelfunktionen 91
 2.9.3.1 Hyperbelfunktionen einer Variablen 91
 2.9.3.2 Darstellung einer Hyperbelfunktion durch eine andere gleichen Argumente 91
 2.9.3.3 Formeln für negative Argumente 91
 2.9.3.4 Hyperbelfunktionen der Summe und der Differenz zweier Argumente (Additionstheoreme) 92
 2.9.3.5 Hyperbelfunktionen des doppelten Arguments 92
 2.9.3.6 Formel von Moivre für Hyperbelfunktionen 92
 2.9.3.7 Hyperbelfunktionen des halben Arguments 92
 2.9.3.8 Summen und Differenzen von Hyperbelfunktionen 92
 2.9.3.9 Zusammenhang zwischen den Hyperbel- und den trigonometrischen Funktionen mithilfe komplexer Argumente 93
2.10 Areafunktionen ... 93
 2.10.1 Definitionen ... 93
 2.10.1.1 Areasinus .. 93
Inhaltsverzeichnis

2.10.1.2 Areakosinus .. 93
2.10.1.3 Areatangens 93
2.10.1.4 Areakotangens 93
2.10.2 Darstellung der Areafunktionen durch den natürlichen Logarithmus 94
2.10.3 Beziehungen zwischen den verschiedenen Areafunktionen 95
2.10.4 Summen und Differenzen von Areafunktionen 95
2.10.5 Formeln für negative Argumente 95

2.11 Kurven dritter Ordnung .. 95
2.11.1 Semikubische Parabel 95
2.11.2 Versiera der Agnesi 96
2.11.3 Kartesisches Blatt 96
2.11.4 Zissoide .. 97
2.11.5 Strophoide ... 97

2.12 Kurven viert er Ordnung ... 98
2.12.1 Konchoide des Nikomedes 98
2.12.2 Allgemeine Konchoide 99
2.12.3 Pascalische Schnecke 99
2.12.4 Kardioide ... 100
2.12.5 Cassinische Kurven 101
2.12.6 Lemniskate .. 102

2.13 Zykloiden .. 102
2.13.1 Gewöhnliche Zykloide 102
2.13.2 Verlängerte und verkürzte Zykloiden oder Trochoiden 102
2.13.3 Epizykloide .. 103
2.13.4 Hypozykloide und Astroide 104
2.13.5 Verlängerte und verkürzte Epizykloide und Hypozykloide 106

2.14 Spiralen ... 106
2.14.1 Archimedische Spirale 106
2.14.2 Hyperbolische Spirale 107
2.14.3 Logarithmische Spirale 107
2.14.4 Evolvente des Kreises 107
2.14.5 Klothoide .. 108

2.15 Verschiedene andere Kurven 108
2.15.1 Kettenlinie oder Katenoide 108
2.15.2 Schleppkurve oder Traktrix 108

2.16 Aufstellung empirischer Kurven 110
2.16.1 Verfahrensweise .. 110
2.16.1.1 Kurvenbildervergleiche 110
2.16.1.2 Rektifizierung 110
2.16.1.3 Parameterbestimmung 110
2.16.2 Gebräuchlichste empirische Formeln 111
2.16.2.1 Potenzfunktionen 111
2.16.2.2 Exponentialfunktionen 111
2.16.2.3 Quadratisches Polynom 112
2.16.2.4 Gebrochenlineare Funktion 113
2.16.2.5 Quadratwurzel aus einem quadratischen Polynom 113
2.16.2.6 Verallgemeinerte Gaußsche Glockenkurve 114
2.16.2.7 Kurve 3. Ordnung, Typ II 114
2.16.2.8 Kurve 3. Ordnung, Typ III 114
2.16.2.9 Kurve 3. Ordnung, Typ I 114
2.16.2.10 Produkt aus Potenz- und Exponentialfunktion 115
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.16.2.11 Exponentialsumme</td>
<td>115</td>
</tr>
<tr>
<td>2.16.2.12 Vollständig durchgerechnetes Beispiel</td>
<td>116</td>
</tr>
<tr>
<td>2.17 Skalen und Funktionspapiere</td>
<td>117</td>
</tr>
<tr>
<td>2.17.1 Skalen</td>
<td>117</td>
</tr>
<tr>
<td>2.17.2 Funktionspapiere</td>
<td>119</td>
</tr>
<tr>
<td>2.17.2.1 Einfach–logarithmisches Funktionspapier</td>
<td>119</td>
</tr>
<tr>
<td>2.17.2.2 Doppelt–logarithmisches Funktionspapier</td>
<td>119</td>
</tr>
<tr>
<td>2.17.2.3 Funktionspapier mit einer reziproken Skala</td>
<td>119</td>
</tr>
<tr>
<td>2.17.2.4 Hinweis</td>
<td>120</td>
</tr>
<tr>
<td>2.18 Funktionen von mehreren Veränderlichen</td>
<td>121</td>
</tr>
<tr>
<td>2.18.1 Definition und Darstellung</td>
<td>121</td>
</tr>
<tr>
<td>2.18.1.1 Darstellung von Funktionen mehrerer Veränderlicher</td>
<td>121</td>
</tr>
<tr>
<td>2.18.1.2 Geometrische Darstellung von Funktionen mehrerer Veränderlicher</td>
<td>121</td>
</tr>
<tr>
<td>2.18.2 Verschiedene ebene Definitionsbereiche</td>
<td>122</td>
</tr>
<tr>
<td>2.18.2.1 Definitionsbereich einer durch eine Menge gegebenen Funktion</td>
<td>122</td>
</tr>
<tr>
<td>2.18.2.2 Zweidimensionale Gebiete</td>
<td>122</td>
</tr>
<tr>
<td>2.18.2.3 Drei- und mehridimensionale Gebiete</td>
<td>122</td>
</tr>
<tr>
<td>2.18.2.4 Methoden zur Definition einer Funktion</td>
<td>122</td>
</tr>
<tr>
<td>2.18.2.5 Formen der analytischen Darstellung einer Funktion</td>
<td>124</td>
</tr>
<tr>
<td>2.18.2.6 Abhängigkeit von Funktionen</td>
<td>125</td>
</tr>
<tr>
<td>2.18.3 Grenzwerte</td>
<td>126</td>
</tr>
<tr>
<td>2.18.3.1 Definition</td>
<td>126</td>
</tr>
<tr>
<td>2.18.3.2 Exakte Formulierung</td>
<td>126</td>
</tr>
<tr>
<td>2.18.3.3 Verallgemeinerung auf mehrere Veränderliche</td>
<td>126</td>
</tr>
<tr>
<td>2.18.3.4 Iterierte Grenzwerte</td>
<td>126</td>
</tr>
<tr>
<td>2.18.4 Stetigkeit</td>
<td>127</td>
</tr>
<tr>
<td>2.18.5 Eigenschaften stetiger Funktionen</td>
<td>127</td>
</tr>
<tr>
<td>2.18.5.1 Nullstellensatz von Bolzano</td>
<td>127</td>
</tr>
<tr>
<td>2.18.5.2 Zwischenwertsatz</td>
<td>127</td>
</tr>
<tr>
<td>2.18.5.3 Satz über die Beschränktheit einer Funktion</td>
<td>127</td>
</tr>
<tr>
<td>2.18.5.4 Satz von Weierstrass über die Existenz des größten und kleinsten Funktionswertes</td>
<td>127</td>
</tr>
<tr>
<td>2.19 Nomographie</td>
<td>128</td>
</tr>
<tr>
<td>2.19.1 Nomogramme</td>
<td>128</td>
</tr>
<tr>
<td>2.19.2 Netztafeln</td>
<td>128</td>
</tr>
<tr>
<td>2.19.3 Fluchtilientafeln</td>
<td>129</td>
</tr>
<tr>
<td>2.19.3.1 Fluchtilientafeln mit drei geraden Skalen durch einen Punkt</td>
<td>129</td>
</tr>
<tr>
<td>2.19.3.2 Fluchtilientafeln mit zwei parallelen und einer dazu geneigten geradlinigen Skala</td>
<td>130</td>
</tr>
<tr>
<td>2.19.3.3 Fluchtilientafeln mit zwei parallelen, geradlinigen Skalen und einer Kurvenskala</td>
<td>130</td>
</tr>
<tr>
<td>2.19.4 Netztafeln für mehr als drei Veränderliche</td>
<td>131</td>
</tr>
<tr>
<td>3 Geometrie</td>
<td>132</td>
</tr>
<tr>
<td>3.1 Planimetrie</td>
<td>132</td>
</tr>
<tr>
<td>3.1.1 Grundbegriffe</td>
<td>132</td>
</tr>
<tr>
<td>3.1.1.1 Punkt, Gerade, Strahl, Strecke</td>
<td>132</td>
</tr>
<tr>
<td>3.1.1.2 Winkel</td>
<td>132</td>
</tr>
<tr>
<td>3.1.1.3 Winkel an zwei sich schneidenden Geraden</td>
<td>133</td>
</tr>
<tr>
<td>3.1.1.4 Winkelpaare an geschnittenen Parallelen</td>
<td>133</td>
</tr>
<tr>
<td>3.1.1.5 Winkel im Gradmaß und im Bogenmaß</td>
<td>134</td>
</tr>
</tbody>
</table>
3.1.2 Geometrische Definition der Kreis- und Hyperbel-Funktionen 134
 3.1.2.1 Definition der Kreis- oder trigonometrischen Funktionen 134
 3.1.2.2 Definition der Hyperbelfunktionen 135
3.1.3 Ebene Dreiecke . 136
 3.1.3.1 Aussagen zu ebenen Dreiecken . 136
 3.1.3.2 Symmetrie . 137
3.1.4 Ebene Vierecke . 139
 3.1.4.1 Parallelogramm . 139
 3.1.4.2 Rechteck und Quadrat . 139
 3.1.4.3 Rhombus oder Raute . 139
 3.1.4.4 Trapez . 139
 3.1.4.5 Allgemeines Viereck . 140
 3.1.4.6 Sehnenviereck . 140
 3.1.4.7 Tangentenviereck . 141
3.1.5 Ebene Vielecke oder Polygone . 141
 3.1.5.1 Allgemeines Vieleck . 141
 3.1.5.2 Regelmäßige konvexe Vielecke . 141
 3.1.5.3 Einige regelmäßige konvexe Vielecke 142
3.1.6 Ebene Kreisfiguren . 143
 3.1.6.1 Kreis . 143
 3.1.6.2 Kreisabschnitt (Kreissegment) und Kreisausschnitt (Kreissektor) . 145
 3.1.6.3 Kreisring . 145
3.2 Ebene Trigonometrie . 146
 3.2.1 Dreiecksberechnungen . 146
 3.2.1.1 Berechnungen in rechtwinkligen ebenen Dreiecken 146
 3.2.1.2 Berechnungen in ebenen schiefwinkligen Dreiecken 146
 3.2.2 Geodätische Anwendungen . 149
 3.2.2.1 Geodätische Koordinaten . 149
 3.2.2.2 Winkel in der Geodäsie . 150
 3.2.2.3 Vermessungstechnische Anwendungen 152
3.3 Stereometrie . 155
 3.3.1 Geraden und Ebenen im Raum . 155
 3.3.2 Kanten, Ecken, Raumwinkel . 156
 3.3.3 Polyeder . 157
 3.3.4 Körper, die durch gekrümmte Flächen begrenzt sind 160
3.4 Sphärische Trigonometrie . 164
 3.4.1 Grundbegriffe der Geometrie auf der Kugel 164
 3.4.1.1 Kurven, Bogen und Winkel auf der Kugel 164
 3.4.1.2 Spezielle Koordinatensysteme . 166
 3.4.1.3 Sphärisches Zweieck . 167
 3.4.1.4 Sphärisches Dreieck . 167
 3.4.1.5 Polardreieck . 168
 3.4.1.6 Eulerische und Nicht–Eulersche Dreiecke 168
 3.4.1.7 Dreikant . 169
 3.4.2 Haupteigenschaften sphärischer Dreiecke 169
 3.4.2.1 Allgemeine Aussagen . 169
 3.4.2.2 Grundformeln und Anwendungen 170
 3.4.2.3 Weitere Formeln . 172
 3.4.3 Berechnung sphärischer Dreiecke . 174
 3.4.3.1 Grundaufgaben, Genauigkeitsbetrachtungen 174
 3.4.3.2 Rechtwinklig sphärisches Dreieck 174
3.4.3.3 Schiefwinklig sphärisches Dreieck .. 176
3.4.3.4 Sphärische Kurven ... 180
3.5 Vektoralgebra und analytische Geometrie 186
 3.5.1 Vektoralgebra ... 186
 3.5.1.1 Definition des Vektors ... 186
 3.5.1.2 Rechenregeln .. 187
 3.5.1.3 Koordinaten eines Vektors ... 188
 3.5.1.4 Richtungskoeffizient oder Entwicklungskoeffizient 189
 3.5.1.5 Skalarprodukt und Vektorprodukt 189
 3.5.1.6 Mehrfache multiplikative Verknüpfungen 191
 3.5.1.7 Vektorielle Gleichungen .. 193
 3.5.1.8 Kovariante und kontravariante Koordinaten eines Vektors 194
 3.5.1.9 Geometrische Anwendungen der Vektoralgebra 195
 3.5.2 Analytische Geometrie der Ebene 196
 3.5.2.1 Ebene Koordinatensysteme ... 196
 3.5.2.2 Koordinatentransformationen 197
 3.5.2.3 Spezielle Punkte in der Ebene 198
 3.5.2.4 Flächeninhalte .. 200
 3.5.2.5 Gleichung einer Kurve ... 200
 3.5.2.6 Gerade .. 201
 3.5.2.7 Kreis .. 204
 3.5.2.8 Ellipse ... 205
 3.5.2.9 Hyperbel ... 207
 3.5.2.10 Parabel ... 210
 3.5.2.11 Kurven 2. Ordnung (Kegelschnitte) 212
 3.5.3 Analytische Geometrie des Raumes 215
 3.5.3.1 Grundlagen ... 215
 3.5.3.2 Räumliche Koordinatensysteme 217
 3.5.3.3 Koordinatentransformationen 219
 3.5.3.4 Drehung mithilfe von Richtungskosinussen 220
 3.5.3.5 Drehung mithilfe von Cardan–Winkeln 221
 3.5.3.6 Drehung mithilfe von Euler–Winkeln 222
 3.5.3.7 Spezielle Punkte im Raum .. 223
 3.5.3.8 Gleichung einer Fläche .. 224
 3.5.3.9 Gleichung einer Raumkurve 225
 3.5.3.10 Ebenen im Raum .. 225
 3.5.3.11 Geraden im Raum ... 228
 3.5.3.12 Schnittpunkte und Winkel von Ebenen und Geraden im Raum 229
 3.5.3.13 Flächen 2. Ordnung, Gleichungen in Normalform 231
 3.5.3.14 Flächen 2. Ordnung, allgemeine Theorie 234
 3.5.4 Geometrische Transformationen und Koordinatentransformationen 236
 3.5.4.1 Geometrische 2D–Transformationen 236
 3.5.4.2 Homogene Koordinaten, Matrixdarstellung 238
 3.5.4.3 Koordinatentransformation 238
 3.5.4.4 Verkettung von Transformationen 239
 3.5.4.5 3D–Transformationen ... 240
 3.5.4.6 Deformationstransformationen 243
 3.5.5 Planare Projektionen .. 244
 3.5.5.1 Klassifizierung ... 244
 3.5.5.2 Ansichtskoordinatensystem 245
 3.5.5.3 Tafelprojektionen .. 245
 3.5.5.4 Axonometrische Projektion 246
Inhaltsverzeichnis

3.5.5.5 Isometrische Projektion 246
3.5.5.6 Schiefes Parallelprojektion 247
3.5.5.7 Perspektivische Projektion 248

3.6 Differenzialgeometrie 250
3.6.1 Ebene Kurven .. 250
3.6.1.1 Definitionen ebener Kurven 250
3.6.1.2 Lokale Elemente einer Kurve 250
3.6.1.3 Ausgezeichnete Kurvenpunkte und Asymptoten 256
3.6.1.4 Allgemeine Untersuchung einer Kurve nach ihrer Gleichung 261
3.6.1.5 Evoluten und Evolventen 262
3.6.1.6 Eingehende von Kurvenscharen 262
3.6.2 Raumkurven ... 263
3.6.2.1 Definitionen für Raumkurven 263
3.6.2.2 Begleitendes Dreibein 264
3.6.2.3 Krümmung und Windung 266
3.6.3 Flächen .. 269
3.6.3.1 Definitionen für Flächen 269
3.6.3.2 Tangentialebene und Flächennormale 270
3.6.3.3 Linienelement auf einer Fläche 271
3.6.3.4 Krümmung einer Fläche 273
3.6.3.5 Regelflächen und abwickelbare Flächen 275
3.6.3.6 Geodätische Linien auf einer Fläche 276

4 Lineare Algebra ... 277
4.1 Matrizen .. 277
4.1.1 Begriff der Matrix 277
4.1.2 Quadratische Matrizen 278
4.1.3 Vektoren ... 279
4.1.4 Rechenoperationen mit Matrizen 280
4.1.5 Rechenregeln für Matrizen 283
4.1.6 Vektor- und Matrizennormen 285
4.1.6.1 Vektornormen 285
4.1.6.2 Matrizennormen 285
4.2 Determinanten .. 286
4.2.1 Definitionen ... 286
4.2.2 Rechenregeln für Determinanten 286
4.2.3 Berechnung von Determinanten 287
4.3 Tensoren ... 288
4.3.1 Transformation des Koordinatensystems 288
4.3.2 Tensoren in kartesischen Koordinaten 289
4.3.3 Tensoren mit speziellen Eigenschaften 291
4.3.3.1 Tensoren 2. Stufe 291
4.3.3.2 Invariante Tensoren 291
4.3.4 Tensoren in krummlinigen Koordinatensystemen 292
4.3.4.1 Kovariante und kontravariante Basisvektoren 292
4.3.4.2 Kovariante und kontravariante Koordinaten von Tensoren 1. Stufe 293
4.3.4.3 Kovariante, kontravariante und gemischte Koordinaten von Tensoren 2. Stufe 294
4.3.4.4 Rechenregeln 295
4.3.5 Pseudotensoren 295
4.3.5.1 Punktspiegelung am Koordinatenursprung 295
4.3.5.2 Einführung des Begriffs Pseudotensor 295
<table>
<thead>
<tr>
<th>Inhaltssverzeichnis XV</th>
</tr>
</thead>
</table>

4.4 Quaternionen und Anwendungen ... 297
 4.4.1 Quaternionen ... 298
 4.4.1.1 Definition und Darstellung .. 298
 4.4.1.2 Matrizendarstellung von Quaternionen .. 299
 4.4.1.3 Rechenregeln .. 300
 4.4.2 Darstellung von Drehungen im \mathbb{R}^3 ... 302
 4.4.2.1 Drehungen eines Objektes um die Koordinatenachsen 303
 4.4.2.2 Cardan–Winkel .. 303
 4.4.2.3 Euler–Winkel ... 304
 4.4.2.4 Drehung um eine beliebige Achse durch den Nullpunkt 304
 4.4.2.5 Drehungen und Quaternionen ... 305
 4.4.2.6 Quaternionen und Cardan–Winkel .. 307
 4.4.2.7 Effizienz der Algorithmen ... 309
 4.4.3 Anwendungen der Quaternionen .. 310
 4.4.3.1 3D–Rotationen in der Computergrafik ... 310
 4.4.3.2 Interpolation mittels Rotationsmatrizen ... 311
 4.4.3.3 Stereografische Projektion ... 311
 4.4.3.4 Satellitenavigation .. 312
 4.4.3.5 Vektoranalyse .. 313
 4.4.3.6 Einheitsbiquaternionen und Starrkörperbewegungen 314

4.5 Lineare Gleichungssysteme .. 315
 4.5.1 Lineare Systeme, Austauschverfahren ... 315
 4.5.1.1 Lineare Systeme .. 315
 4.5.1.2 Austauschverfahren .. 315
 4.5.1.3 Lineare Abhängigkeiten ... 316
 4.5.1.4 Invertierung einer Matrix ... 316
 4.5.2 Lösung linearer Gleichungssysteme ... 316
 4.5.2.1 Definition und Lösbarkeit ... 316
 4.5.2.2 Anwendung des Austauschverfahrens ... 318
 4.5.2.3 Cramersche Regel ... 319
 4.5.2.4 Gaußscher Algorithmus ... 320
 4.5.3 Überbestimmte lineare Gleichungssysteme ... 321
 4.5.3.1 Überbestimmte lineare Gleichungssysteme und lineare
 Quadratmittelprobleme ... 321
 4.5.3.2 Hinweise zur numerischen Lösung linearer Quadratmittelprobleme ... 322

4.6 Eigenwertaufgaben bei Matrizen .. 322
 4.6.1 Allgemeines Eigenwertproblem ... 322
 4.6.2 Spezielles Eigenwertproblem ... 322
 4.6.2.1 Charakteristisches Polynom ... 322
 4.6.2.2 Reelle symmetrische Matrizen, Ähnlichkeitstransformationen 324
 4.6.2.3 Hauptachsentransformation quadratischer Formen 325
 4.6.2.4 Hinweise zur numerischen Bestimmung von Eigenwerten 327
 4.6.3 Singulärwertzerlegung .. 329

5 Algebra und Diskrete Mathematik .. 330
 5.1 Logik .. 330
 5.1.1 Aussagenlogik .. 330
 5.1.2 Ausdrücke der Prädikatenlogik ... 333
 5.2 Mengenlehre ... 335
 5.2.1 Mengenbegriff, spezielle Mengen ... 335
 5.2.2 Operationen mit Mengen ... 336
 5.2.3 Relationen und Abbildungen ... 339