

Kinematik und Kinetik

Arbeitsbuch mit ausführlichen Aufgabenlösungen, Grundbegriffen, Formeln, Fragen, Antworten

von Gerhard Knappstein Denis Anders

5., erweiterte Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 55583

Der Autor

Dipl.-Ing. Gerhard Knappstein arbeitete nach seiner Ausbildung zum Werkzeugmacher und dem Maschinenbaustudium als Konstrukteur und Berechnungsingenieur in der Industrie. Anschließend war er Mitarbeiter im Fachbereich Maschinenbau – Fachgebiet Technische Mechanik – an der Universität Siegen.

Der Koautor

Prof. Dr.-Ing. Denis Anders war nach dem Studium der Technischen Mathematik an der Universität Siegen und der anschließenden Promotion am Lehrstuhl für Fest-körpermechanik mehrere Jahre als Entwicklungs- und Berechnungsingenieur im Maschinen- und Anlagenbau tätig. Seit 2016 hat er die Professur für Technische Mechanik und Strömungslehre an der Technischen Hochschule Köln inne.

5., erweiterte Auflage 2017 Druck 5 4 3 2 1

ISBN 978-3-8085-5862-1

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der gesetzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

Der Inhalt des Werkes wurde sorgfältig erarbeitet. Dennoch übernehmen Autor und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung.

© 2017 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten http://www.europa-lehrmittel.de

Umschlaggestaltung: braunwerbeagentur, 42477 Radevormwald Druck: Medienhaus Plump GmbH, 53619 Rheinbreitbach

Vorwort

Studierende der Ingenieurwissenschaften stellen sehr schnell fest, dass zum richtigen Verstehen und Einordnen der theoretischen Grundlagen des Mechanikfachs *Kinematik und Kinetik* das selbständige Lösen von Aufgaben unverzichtbar ist. Oft glauben Übende, die gelernten Formeln und Lehrsätze verstanden zu haben, doch in Wirklichkeit haben sie keineswegs alle ihre Anwendungsbedingungen und Konsequenzen erfasst.

Das vorliegende Arbeitsbuch ist als Ergänzung zu den Vorlesungen gedacht und bietet die notwendigen Grundbegriffe und Formeln, zahlreiche ausführlich gelöste Übungsaufgaben sowie Fragen und Antworten zum Überprüfen der Kenntnisse.

Alle wichtigen Teilgebiete der Kinematik und Kinetik werden behandelt und sind so strukturiert, dass in jedem Kapitel die drei Komponenten *Grundbegriffe und Formeln*, *Aufgaben mit Lösungen* sowie *Fragen und Antworten* aufeinander folgen. Dadurch besteht eine ausgewogene Verbindung von Theorie und gelösten Übungsaufgaben.

Der Inhalt des Buches beschränkt sich bewusst auf das Notwendige und ist durch viele Bilder leicht verständlich, so dass die Studierenden schnell erkennen, worauf es ankommt und den Überblick behalten. Überhaupt habe ich mit Zeichnungen nicht gespart, da Studierende dadurch viel schneller und besser über schwierige Sachverhalte "im Bilde" sind, als das je mit Text geschehen könnte.

Zur bestmöglichen Nutzung des Buches empfehle ich, in Verbindung mit den Vorlesungen zunächst das Wesen der wichtigsten Grundbegriffe und Grundformeln zu studieren, und dann zu versuchen, die Aufgaben selbständig zu lösen. Oft ist es auch hilfreich, die Aufgaben, Lösungen, Fragen und Antworten in der Gruppe zu bearbeiten und zu diskutieren.

Da die Erfahrung zeigt, dass viele Studienanfänger den Weg von der Problemstellung zur Lösung verlieren, wenn man ihn nicht systematisch anlegt, sind ergänzend Leitlinien zum Lösen von Mechanik-Aufgaben als grundsätzliches Lösungsverfahren angegeben.

Mit der vorliegenden 5. Auflage ist Denis Anders als Ko-Autor dazu gekommen. Weiterhin wurden neue Beispiele und Aufgaben und eine Reihe von Ergänzungen eingearbeitet.

Wir danken dem Verlag Europa-Lehrmittel für die sehr gute Zusammenarbeit.

Leserkontakt

Autoren und Verlag Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG Düsselberger Str. 23 42781 Haan-Gruiten lektorat@europa-lehrmittel.de http://www.europa-lehrmittel.de

Inhaltsverzeichnis

U	v Einieitung		1
1	1 Kinematik der geradlinigen Bewegun	g eines Punktes	1
	1.1 Grundbegriffe und Formeln		1
	1.1.1 Ort, Geschwindigkeit, Besch	eunigung	1
	1.1.2 Kinematische Diagramme		2
		onstanter Geschwindigkeit (gleichförmige Bewe-	2
	1.1.4 Geradlinige Bewegung mit ke	onstanter Beschleunigung (gleichmäßig beschleunigte	
		verzögerte Bewegung)	3
		e Bewegung	3
	1.2 Aufgaben mit Lösungen		5
	Aufgabe 1.1 Freier Fall		5
	Aufgabe 1.2 Bewegung von Zug	und Kraftfahrzeug	6
	Aufgabe 1.3 Geradlinige Bewegu	ng eines Fahrzeugs	7
	Aufgabe 1.4 Auffahrunfall zweie	r Fahrzeuge	9
		de Körper auf parallelen Strecken	11
		il an Gleitstein gekoppelt	13
	_	ner Kreisbewegung	16
		erholvorgangs	18
	Aufgabe 1.9 Kinematik eines Mo	torradausflugs	19
		ücksichtigung des Luftwiderstandes	20
	_	chviskosen Medien	22
		g eines Feder-Massen-Schwingers	23
	Aufgabe 1.13 Freier Fall aus große	r Höhe	24
	1.3 Fragen und Antworten		27
2	2 Kinematik der krummlinigen Beweg	ing eines Punktes	29
	2.1 Grundbegriffe und Formeln		29
	211EL D ' '	14 11 17 17 4	20
		chtwinkligen Koordinatensystem	29
	-	en Koordinaten; Tangential- und Normalbeschleuni-	22
		Dalam Winterland America Historia Winterland Instruction	32
		Bahn; Winkelgeschwindigkeit, Winkelbeschleuni-	2.1
		wegung, gleichmäßig beschleunigte Kreisbewegung.	34
		in Polarkoordinaten	36
	2 1 5 Räumliche Punkthewegung		36

	2.2	Aufgaben mit	Lösungen	38
		Aufgabe 2.1	Ebene Punktbewegung in Parameterdarstellung	38
		Aufgabe 2.2	Bewegung des Schnittpunktes zweier Geraden	39
		Aufgabe 2.3	Bewegungsanalyse eines Motorradsprungs	40
		Aufgabe 2.4	Hubschrauberflug	42
		Aufgabe 2.5	Steil- und Flachwurf	44
		Aufgabe 2.6	Räumliche Bahnkurve	45
		Aufgabe 2.7	Rollendes Rad auf horizontaler Unterlage	47
		Aufgabe 2.8	Punktbewegung auf ebener Kurve	50
		Aufgabe 2.9	Ziehen eines Bootes über einen Kanal	51
		Aufgabe 2.10	Kreisbewegung eines Punktes auf rotierender Scheibe	53
		_	Kreisbewegung eines Punktes	54
			Kreisförmige Kurvenfahrt eines Zuges	55
		-	Entgegengesetzte Punktbewegungen auf einer Kreisbahn	57
		_	Bremsscheibe	59
		_	Schwungscheibe	60
		•	Rotierende Schleifenschwinge	61
			Roboter	62
	2.3	_	ntworten	63
3	Kin	ematik des sta	arren Körpers	65
	3.1	Grundbegriffe	und Formeln	65
		3 1 1 Translat	ion und Rotation sowie Winkelgeschwindigkeit des starren Körpers	65
			Bewegung des starren Körpers (mit Hinweisen auf die Bewegung im	03
			Momentanpol, Geschwindigkeit und Beschleunigung	66
		,,		00
	3.2	Aufgaben mit	Lösungen	70
		Aufgabe 3.1	Rechtwinkliger Kreuzschieber	70
		Aufgabe 3.2	Dreieckscheibe	72
		Aufgabe 3.3	Beschleunigte rollende Kreisscheibe	73
		Aufgabe 3.4	Kette einer Planierraupe	75
	2 2	C	ntworten	78
		C		
4	Kin	etik des Mass	enpunktes und der Massenpunktsysteme	81
	4.1	Grundbegriffe	und Formeln	81
		•	sches Grundgesetz (Massenpunkt)	81
		-	von D'ALEMBERT (Massenpunkt)	82
			atz (Massenpunkt)	83
		4.1.4 Arbeit, l	Energie, Leistung (Massenpunkt)	84
		115 Engrain	satz und Arbeitssatz (Massenpunkt)	86

		4.1.6 Schwerp	punktsatz, Impulssatz, Drallsatz beim Massenpunktsystem	87
	4.2	Aufgaben mit	Lösungen	90
		Aufgabe 4.1	Anschieben eines Autos	. 90
		Aufgabe 4.2	Antriebskraft einer Straßenbahn	90
		Aufgabe 4.3	Ebene Massenpunktbewegung in Parameterdarstellung	91
		Aufgabe 4.4	Beschleunigte Bewegung und schiefe Ebene	
		Aufgabe 4.5	Drei miteinander verbundene Massen	
		Aufgabe 4.6	Bremsung eines Krans	
		Aufgabe 4.7	Fall eines Transportguts	
		Aufgabe 4.8	Massenpunkt an kreisförmiger Wand	
		Aufgabe 4.9	Massenpunkt auf rauer Unterlage	
		C	Sprung aus einem fahrenden Boot	
		•	Arbeit eines Gepäckträgers	
			Aufprall eines beladenen Wagens	
		•	Reibscheibenkupplung	
		_	Abbremsung auf rauer Unterlage	
			Bewegung auf rauer schiefer Ebene	
		· ·	Reibungsfreie horizontale Bewegung eines Massenpunktes	
		_	Fahrzeug auf glatter Fahrbahn	
			Untersuchung einer Schiebehülse	
5		Fragen und A	örper	112 115
	- 1	G 11 :00		115
	5.1	Grundbegriffe	und Formeln	. 115
		5.1.1 Translat	ion	115
		5.1.2 Rotation	n um eine feste Achse	115
		5.1.3 Massent	rägheitsmomente	. 117
		5.1.4 Auswuc	hten von Rotoren	. 124
		5.1.5 Ebene B	Bewegung des starren Körpers	125
		5.1.5.1 \$	Schwerpunktsatz, Drallsatz	125
		5.1.5.2 I	Prinzip von d'Alembert	126
		5.1.5.3 I	Energiesatz und Arbeitssatz	127
		5.1.6 Räumlic	che Bewegung starrer Körper	. 128
		5.1.6.1 \$	Schwerpunktsatz, Drallsatz	128
	5.2	Aufgaben mit	Lösungen	130
		Aufgabe 5.1	Rotierender \(\mathbb{L}\)-förmig gebogener Körper	
		Aufgabe 5.2	Massenträgheitsmoment von Kreisringsegment mit konstanter Dicke	
		Aufgabe 5.3	Massenträgheitsmoment einer homogenen Kugel	
		Aufgabe 5.4	Auswuchten eines starren Rotors	
		· ·		
		Aufgabe 5.5	Gekoppelte Körper auf schiefer Ebene	137

		Aufgabe 5.6	Rollende Walze	139
		Aufgabe 5.7	Fördersystem aus Rollen und Seil	142
		Aufgabe 5.8	Schweres Seil auf Windentrommel	145
		Aufgabe 5.9	System aus zwei Körpern und einer Rolle	146
		Aufgabe 5.10	Drehbarer Stab	147
	5.3	Fragen und A	ntworten	149
6	Sch	wingungen		151
	6.1	Grundbegriffe	und Formeln	151
		6.1.1 Freie un	gedämpfte Schwingungen	155
			and Federnschaltungen	158
		6.1.3 Freie ge	dämpfte Schwingungen	159
		6.1.3.1 I	Das logarithmische Dekrement (Dämpfungsdekrement)	161
			gene Schwingungen	162
			Krafterregung oder Erregung über eine Feder (Federkrafterregung)	162
			Jnwuchterregung	165
	6.2	Aufgaben mit	Lösungen	167
	0.2	Aufgabe 6.1	Taktmesser (Metronom)	167
		Aufgabe 6.2	Rollschwinger	167
		Aufgabe 6.3	Schwingsystem aus Kreisscheibe und Feder	168
		Aufgabe 6.4	Scheibe mit Feder	169
		Aufgabe 6.5	Dünner Stab mit Feder	171
		Aufgabe 6.6	Schwingende Kreisscheibe	172
		Aufgabe 6.7	Masse mit Balken und Stäben	174
		Aufgabe 6.8	Feder-Masse-Dämpfer-System	176
		Aufgabe 6.9	Ausschwingversuch	177
		· ·	Federkrafterregtes System	178
			Harmonisch erregtes Federende	179
		•	Schwinger mit Erregerkraft	181
		_	Unwuchterregte Maschine	183
	()	г 1 л		105
	6.3	Fragen und Ai	ntworten	185
7	Stol	ßvorgänge		187
	7.1	Grundbegriffe	und Formeln	187
	7.2	Aufgaben mit	Lösungen	191
		Aufgabe 7.1	Stoß auf horizontaler Unterlage	191

		Aufgabe 7.2	Stoß auf schiefer Ebene	192
		Aufgabe 7.3	Stoß gegen drehbar gelagerten Körper	194
		Aufgabe 7.4	Stoß zwischen Pendel und drehbarem Stab	196
	7.3	Fragen und A	ntworten	198
8	Rel	ativbewegung		199
	8.1	Grundbegriffe	e und Formeln	199
	8 2	Aufaahen mit	t Lösungen	203
	0.2	Aufgabe 8.1	Mit dem Boot über einen Fluss	
		Aufgabe 8.2	Gleitstein in radialer Führung einer rotierenden Scheibe	203
		Aufgabe 8.3	Kreisbewegung eines Punktes auf rotierender Scheibe	206
		Aufgabe 8.4	Radiale Punktbewegung auf einem drehbaren Stab	208
		Aufgabe 8.5	Fliehkraftpendel	
	8.3	Fragen und A	ntworten	211
L	eitlin	nien zum Löse	en von Aufgaben aus Kinematik und Kinetik	212
A	nhar	ng: Zusamm	enstellung der Formeln (Formelsammlung)	214
	A1	Kinematik de	er geradlinigen Bewegung eines Punktes	214
			er krummlinigen Bewegung eines Punktes	
			s starren Körpers	
	A4	Kinetik des M	Massenpunktes und der Massenpunktsysteme	223
	A5	Kinetik starre	r Körper	229
	A6	Schwingunge	en	236
	A7	Stoßvorgänge	2	240
	A8	Relativbeweg	gung	242
D	as or	jechische Alph	habet	245
	_	_	zzeichen für dezimale Teile und Vielfache von Einheiten	
			Einheitenzeichen	246
اند	111101			247
\mathbf{F}_{i}	nice	Hormeln and c	der Mathematik	/4/

Sachv	vortverzeichnis	301
Litera	ntur	300
110	sches Arbeitsintegral, Kraftgrößenverfahren)	295
	6 Anwendung des Energieprinzips bei Biegebeanspruchung (CASTIGLIANO, MOHR-	294
	5 Ausgewählte Werkstoffkennwerte	293
	3 Zugfestigkeit $R_{\rm m}$, Streckgrenze $R_{\rm p0,2}$ und Bruchdehnung $A_{\rm 5}$ einiger Werkstoffe 4 Zulässige Spannungen für Kran-Stahltragwerke	293
		292
	1 Dünnwandige Behälter (Membranschalen) unter Innendruck	291
) Knickung	288
F9	Querkraftschub	288
F8	Lage der Schubmittelpunkte von dünnwandigen Profilen	287
F7	Torsion	
F6	Biegung	280
F5	Flächenträgheitsmomente; Lage der Hauptachsen; Widerstandsmomente	275
F4	Zug und Druck in Stäben	273
F3	Zusammenhang zwischen Spannungen und Verformungen	
F2	Verformungen	
F1	Einheiten; Spannungen	
Einige	e Grundbegriffe und Formeln der Festigkeitslehre	271
S8	Biegeschlaffes Seil	268
S7	Haftung und Reibung	267
S 6	Schwerpunkt	263
S5	Schnittgrößen am Balken	261
S4	Ebenes Fachwerk	259
S3	Allgemeines Kräftesystem	
S2	Zentrales Kräftesystem	253
S 1	Kräfte, Lagerungen, Freimachen, Axiome, Schnittprinzip	248
Einige	e Grundlagen und Formeln aus der Statik	248

Aufgabe	Erläuterung	"Info"-Bild	Seite
	1 Kinematik der geradlinigen Bewegung eines Punktes		1
1.1	Freier Fall;	†	5
	Geschwindigkeit, Fallzeit, kinematische Diagramme	77777.	
1.2	Bewegung von Zug und Kraftfahrzeug;	v Kraftfahrzeug	6
	Geschwindigkeit, Zeit	Zug	
1.3	Geradlinige Bewegung eines Fahrzeugs;	v	7
	Geschwindigkeit, kinematische Diagramme		
1.4	Auffahrunfall zweier Kraftfahrzeuge;		9
	Zeit, Geschwindigkeit beim Aufprall		
1.5	Zwei sich begegnende Körper auf parallelen Strecken;		11
	Zeit, Steig- und Fallhöhe, Geschwindigkeiten, kinematisches Diagramm		
1.6	Punktmasse über Seil an Gleitstein gekoppelt;		13
	Orts-, Geschwindigkeits-, Beschleunigungs-Zeit-Funktion		
1.7	Parallelprojektion einer Kreisbewegung;	<u> </u>	16
	Ort, Geschwindigkeit, kinematische Diagramme	•	
1.8	Kinematik eines Überholvorgangs;		18
	Zeit, Weg	Betonmichfahrzeug	
1.9	Kinematik eines Motorradausflugs;	. 88	19
	Weg-Zeit-Diagramm, Weg	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
1.10	Freier Fall unter Berücksichtigung des Luftwiderstandes;		20
	Fallgeschwindigkeit		
1.11	Sedimentation (Ablagerung) in hochviskosen Medien;		22
	Sedimentationsgeschwindigkeit, Einsinktiefe		

Aufgabe	Erläuterung	"Info"-Bild	Seite
1.12	Bewegungsgleichung eines Feder-Massen- Schwingers;		23
1.13	Weg, Geschwindigkeit Freier Fall aus großer Höhe;		24
	Aufschlaggeschwindigkeit		
	2 Kinematik der krummlinigen Bewegung eines Punktes		29
2.1	Ebene Punktbewegung in Parameterdarstellung;		38
	Beschleunigungen, Krümmungsradius		
2.2	Bewegung des Schnittpunktes zweier Geraden;	†	39
	Geschwindigkeiten, Bahngleichung des Schnitt- punktes		
2.3	Bewegungsanalyse eines Motorradsprungs;		40
	Bahnkurve, Neigungswinkel		
2.4	Hubschrauberflug; Geschwindigkeit, Zeit		42
2.5	Steil- und Flachwurf;		44
	Bahnkurve, Wurfzeit		
2.6	Räumliche Bahnkurve;		45
	Geschwindigkeiten, Bahnkurve		
2.7	Rollendes Rad auf horizontaler Unterlage;		47
	Bahnkurve, Geschwindigkeit, Beschleunigung, Weg		
2.8	Punktbewegung auf ebener Kurve;	1	50
	Bahngeschwindigkeit, Beschleunigung, Bahnkurve		

Aufgabe	Erläuterung	"Info"-Bild	Seite
2.9	Ziehen eines Bootes über einen Kanal; Bahnkurve des Bootes		51
2.10	Kreisbewegung eines Punktes auf rotierender Scheibe; Geschwindigkeit, Beschleunigung		53
2.11	Kreisbewegung eines Punktes; Geschwindigkeit-Zeit-Funktion		54
2.12	Kreisförmige Kurvenfahrt eines Zuges; Beschleunigungen		55
2.13	Entgegengesetzte Punktbewegungen auf einer Kreisbahn; Beschleunigungen, Lage der Gesamtbeschleunigung, Ort	-+-	57
2.14	Bremsscheibe; Anfangsdrehzahl, Winkelbeschleunigung, Verzögerung, Winkelgeschwindigkeit		59
2.15	Schwungscheibe; Winkelbeschleunigung, Umdrehungen	ω <u> </u>	60
2.16	Rotierende Schleifenschwinge; Größe und Richtung der Beschleunigung		61
2.17	Roboter; Zylinderkoordinaten, Geschwindigkeitsvektor, Beschleunigungsvektor		62

Aufgabe	Erläuterung	"Info"-Bild	Seite
	3 Kinematik des starren Körpers		65
3.1	Rechtwinkliger Kreuzschieber;		70
	Geschwindigkeit, Winkelgeschwindigkeit, Winkelbeschleunigung		
3.2	Dreieckscheibe;		72
	Geschwindigkeit, Momentanpol		
3.3	Beschleunigte rollende Kreisscheibe;		73
	Beschleunigung und Beschleunigungsverlauf		
3.4	Kette einer Planierraupe;		75
	Geschwindigkeiten und Beschleunigungen		
	4 Kinetik des Massenpunktes und der Massenpunktsysteme		81
Beispiel	Massenpunkt auf rauer schiefer Ebene;	9	86
	Geschwindigkeit		
4.1	Anschieben eines Autos;	-	90
	Beschleunigung		
4.2	Antriebskraft einer Straßenbahn;		90
	Antriebskraft, Anfahrweg		
4.3	Ebene Massenpunktbewegung in Parameterdar-stellung;		91
	verursachende Kräfte		
4.4	Beschleunigte Bewegung und schiefe Ebene;	<u> </u>	93
	Beschleunigung, Seilkraft	IIII THE	
4.5	Drei miteinander verbundene Massen;	minim	94
	Beschleunigung, Seilkraft		
4.6	Bremsung eines Krans;	-	96
	Ausschlagwinkel, Seilkraft	mmm.	
		d	

Aufgabe	Erläuterung	"Info"-Bild	Seite
4.7	Fall eines Transportguts; Fallhöhe		97
4.8	Massenpunkt an kreisförmiger Wand; erforderliche Höhe	•	99
4.9	Massenpunkt auf rauer Unterlage; Geschwindigkeit	F	101
4.10	Sprung aus einem fahrenden Boot; Geschwindigkeiten	**************************************	102
4.11	Arbeit eines Gepäckträgers; mechanische Arbeit		103
4.12	Aufprall eines beladenen Wagens; erforderliche Geschwindigkeit		103
4.13	Reibscheibenkupplung; Winkelgeschwindigkeit, Energieverlust	200 200 200 200 200 200 200 200 200 200	104
4.14	Abbremsung auf rauer Unterlage; erforderlicher Reibungskoeffizient	**************************************	105
4.15	Bewegung auf rauer schiefer Ebene; Geschwindigkeit	THE	106
4.16	Reibungsfreie horizontale Bewegung eines Massenpunktes; Geschwindigkeit	**************************************	107
4.17	Fahrzeug auf glatter Fahrbahn, durchdrehende und blockierte Reifen; Geschwindigkeit, Zeit		108
4.18	Untersuchung einer Schiebehülse; Geschwindigkeit, Dissipationsenergie, Reibkraft		110

Aufgabe	Erläuterung	"Info"-Bild	Seite
	5 Kinetik starrer Körper		115
Beispiel	Walze auf geneigter Bahn;		127
	Geschwindigkeit		
5.1	Rotierender L-förmig gebogener Körper;	h h	130
	Massenträgheitsmomente, Lagerkräfte		
5.2	Massenträgheitsmoment von Kreisringsegment mit konstanter Dicke;		131
	Massenträgheitsmomente		
5.3	Massenträgheitsmoment einer homogenen Kugel;		132
	Massenträgheitsmoment		
5.4	Auswuchten eines starren Rotors;		133
	notwendige Ausgleichsmassen		
5.5	Gekoppelte Körper auf schiefer Ebene;		137
	Beschleunigung, Stangenkraft		
5.6	Rollende Walze;		139
	Massenträgheitsmoment, Beschleunigung		
5.7	Fördersystem aus Rollen und Seil;	· · · · · · · · · · · · · · · · · · ·	142
	Beschleunigung, Seilkräfte		
5.8	Schweres Seil auf Windentrommel;		145
	Drehzahl		
5.9	System aus zwei Körpern und einer Rolle;		146
	Geschwindigkeit		

Aufgabe	Erläuterung	"Info"-Bild	Seite
5.10	Drehbarer Stab;		147
	Winkelbeschleunigung, Winkelgeschwindigkeit, Lagerreaktionen		
	6 Schwingungen		151
6.1	Taktmesser (Metronom);	.	167
	Schwingungsdauer		
6.2	Rollschwinger;	1,,,,,	167
	Eigenkreisfrequenz, Schwingungsdauer	himminni).	
6.3	Schwingsystem aus Kreisscheibe und Feder;	- A	168
	Eigenkreisfrequenz, Schwingungsdauer		
6.4	Scheibe mit Feder;	· · · · · · · · · · · · · · · · · · ·	169
	Schwingungsdauer		
6.5	Dünner Stab mit Feder;	J	171
	Massenträgheitsmoment, Eigenkreisfrequenz	3	
6.6	Schwingende Kreisscheibe;		172
	Eigenkreisfrequenz		
6.7	Masse mit Balken und Stäben;	A Trin	174
	Eigenkreisfrequenz		
6.8	Feder-Masse-Dämpfer-System;	*****	176
	Eigenkreisfrequenz, Schwingungsdauer		
6.9	Ausschwingversuch;		177
	logarithmisches Dekrement, Dämpfungsgrad, Eigenkreisfrequenz, Federkonstante, Dämpfungskonstante		

Aufgabe	Erläuterung	"Info"-Bild	Seite
6.10	Federkrafterregtes System;	Y	178
	Eigenkreisfrequenz, Bewegung und Amplitude		
6.11	Harmonisch erregtes Federende;	9-	179
	Schwingungsdifferenzialgleichung, Phasenverschiebung, Vergrößerungsfunktion	www.	
6.12	Schwinger mit Erregerkraft;	(//////	181
	Erregerkreisfrequenz, Federkonstante	· · · · · · · · · · · · · · · · · · ·	
6.13	Unwuchterregte Maschine;		183
	Amplitude, Federkonstante		
	7 Stoßvorgänge		187
7.1	Stoß auf horizontaler Unterlage;	T	191
	Rückprallgeschwindigkeit, Weg	o- [
7.2	Stoß auf schiefer Ebene;	(g) //	192
	Zeit zwischen erstem Zusammenprall und nächstem Zusammenstoß		
7.3	Stoß gegen drehbar gelagerten Körper;	T T	194
	Geschwindigkeiten, Kraftstoß, stoßfreies Lager		
7.4	Stoß zwischen Pendel und drehbarem Stab;	I	196
	Winkelgeschwindigkeit		
	8 Relativbewegung		199
8.1	Mit dem Boot über einen Fluss;	11.11.11.11.11.11.11.11.11.11.11.11.11.	203
	Vorhaltewinkel, Absolutgeschwindigkeit, Fahrzeit		

Aufgabe	Erläuterung	"Info"-Bild	Seite
8.2	Gleitstein in radialer Führung einer rotierenden Scheibe; Absolutgeschwindigkeit, Beschleunigung		204
8.3	Kreisbewegung eines Punktes auf rotierender Scheibe; Geschwindigkeit, Beschleunigung		206
8.4	Radiale Punktbewegung auf einem drehbaren Stab; Absolutgeschwindigkeit, Beschleunigung	+	208
8.5	Fliehkraftpendel; Eigenkreisfrequenz, erforderliche Körperpendellänge		209