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Preface

Those brave souls taking up physics for study and an introductory textbook
have one thing in common: they face the same problem — although from
different vantage points — the lack of a yet to be established convention on
how to communicate. Everyday English is too imprecise, students come from
school prepared to widely different degrees and there are grossly misguided ideas
concerning what studying physics is all about. But we are all human beings,
have all been for a walk in the fields, have marveled at the night sky, can visualize
things with our eyes closed, possess the ability to wonder and are familiar with
the question “Why ? ”. Doing Physics means to never cease asking this question.

Unraveling the processes of Nature takes place at a desk. Understanding means
reduction to phenomena already known. This is done with equations, sketches,
and calculations. Every symbol that appears on paper carries meaning. The art
of understanding develops from the characters in formulae just like notes in a
musical score can be turned into music. The art of understanding is a practical
skill; its tools are the symbols in the formulae of “calculation with meaning”.
The object of this book is to explicate these symbols and to make their meaning
transparent. It can accompany the reader only so far; only by trying things out
oneself, by practicing, practicing and practicing more, will the decoder of notes
become a pianist.

No particularly advanced degree of school knowledge is presumed. What an an-
gle is, e.g. or why the theorem of Pythagoras holds will be explained. Perhaps
— and that would be nice — parts from the first few chapters of the book
may be used by teachers and students in advanced classes in high schools. In
subsequent chapters other aspects will take precedence: efficiency (brief is be-
autiful; visualizing things saves time), elegance (hopefully; else, try to improve
on it!) and the ability to discriminate between fundamentals, derivations and
specialized applications (only in this way can one cope with the by now enor-
mous field of physics). This places high demands now on the “reader without
prior knowledge”: the ability to reflect, imagination, being honest with oneself
and a tremendous desire to write down by oneself, try out and improve all ideas
accessible by the formulae — until one acquires the feeling of having invented
them on one’s own.

The book is based on a course for first–year students at Hannover Universi-
ty/Germany (lecture and exercises) under the heading Calculational Methods of
Physics. This title is an overstatement. Formerly it was called Supplementary
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Mathematics Course. Nothing in this title was quite correct. But everyone knew
what it meant. With the title of this book it is just the opposite. It is correct
— but one doesn’t quite understand it. That is because it contains two words
that are foreign. It is not uncommon for these two words

Theoretical Physics

to be thoroughly misunderstood. Let us first “translate” the noun. What is
remarkable about physics is that it exists at all. And it has only existed – in
the proper sense of the term – for about 300 years. We have known about
regularities in Nature’s processes for a long time — ever since man was able to
record and communicate his observations. Under identical conditions processes
recur in exactly the same manner. Nature behaves mathematically. What was
really exciting was the realization that there is unity in the mathematics of these
processes. There is only one mathematics involved, valid for all phenomena.
This may sound incredible. One is entitled to have doubts (they will be removed
during one’s studies). If the statement is correct, though, then feelings of awe
are called for at this point. That a unique “nature–mathematics” does exist is
Nature’s wonder No.1. Mathematics is based on axioms (a few initial statements
that determine everything that follows from them). The axioms of the “nature–
mathematics” are called first principles. If we know the world’s first principles
we can — in principle — understand all its phenomena. Understanding is
now equivalent to reduction to these axioms. The initial first principle (it was
incomplete and not quite right, but after all it was the first) was formulated by
Newton in 1687.

We shall now try to give a definition of physics (in a way not to be found in any
dictionary):

Physics is the (one) fundamental natural science that, on one hand,
looks for the (small number of correct and exhaustive) first principles
of “nature–mathematics” and, on the other hand, seeks to understand
the phenomena of Nature by demonstrating them to be inevitable con-
sequences of such principles (as far as they are already known).

The back side of this definition is somewhat malicious. As soon as one ceases
to have anything to do with Nature’s first principles, one is no longer dealing
with physics at all. The reader is invited to reflect on how well our definition
differentiates physics from other natural sciences. It is not “arrogant” but cer-
tainly very high-brow. Biologists and chemists can rightly reply that we do not
yet understand even a blade of grass or the properties of water. For the time
being that is still too difficult.

Physics and calculating are thus inseparable. Mathematicians do mathematics;
physicists do “nature–mathematics”. At worst, the former may contain a logical
error. The latter, in contrast, can also be wrong because it does not conform
to the actual behavior of Nature. Physics thus has two supreme judges: logic
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and reality. Maybe that is why it is commonly regarded as being “difficult”.
One can be ridiculed all too easily for producing a solution to an exercise that
is (almost) completely logical but nonetheless wrong. How come? There were
two solutions to the problem, for instance, but only one made sense.

Now it is easy to understand the adjective. It refers to a division of labor.
Experimental physicists spend their working lives closer to natural phenomena
and theoretical physicists closer to logic — and exclusively at their desks. The
choice of the word “theory” is unfortunate. It seems to imply that one is free
to invent the way the world is constituted, or that physics is just one way to
interpret the world among many. No, every detail of our current knowledge
of “nature–mathematics” has been examined and confirmed by thousands of
physicists. Proof of even the slightest deviation will lead to a Nobel Prize.
Theoretical physics comprises the most solid statements that man is able to
express about Nature.

There is only one way to get to the heart of things. The inner harmony of Na-
ture is accessible only to those who have mastered the art of “calculation with
meaning”. This means to have a firm grasp of its

Analytical Tools

to make use of them, to work and think in terms of them. These tools and their
symbols are also those of mathematics. They appear on paper. The comparison
with the pianist fails here because now everything takes place on paper. We
are both composer and pianist. To each of the following 16 chapters one may
naturally assign a typical symbol in a free and easy manner. In “cuneiform
script”, the contents, for example, looks like this:

⇀
.
⇀ m

..
⇀
r DHDT ex

∫
Ly = f

∇ ∮
etDΔ

⇀
E ×⇀

B eikx δS −∑ p ln(p)

mc2 i�
.
ψ .

These symbols (and many more) are like building blocks out of a construction
kit. They are capable of causing an incredibly large amount of work. By means
of these building blocks Nature can be partially “reconstructed” and — even
more importantly — predicted.

Theoretical physics is something one does. I sit at my desk and consider a certain
natural process which I should like to comprehend. So I start to draw. That
is a good thing. We did not acquire the ability to draw directly by Darwinian
selection so some effort is required in order to actually do it. Sketches nearly
always have to be improved. The same applies to calculations. So I use a pencil.
It is well suited to the way we work: noting something down — reflecting —
revising. I want to be able to erase. I need to feel free when I draw and in
order to draw, and when I calculate in order to facilitate the next step of the
calculation.
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Another advantage of the pencil is that it can be sharpened. If necessary one can
easily distinguish between four different letter sizes (imagine a subscript with
index on index on index). We write on blank paper. The reader can easily prove
to himself (and his old school-teacher) how much squared paper contravenes the
way we work. The world is not made up of squares and all types of templates
are detrimental for us. At venerable universities, lecturers are often reluctant
to give this type of advice. However, when you study physics it is particularly
important to vary your patterns of thinking and proceeding until you have found
the ones that suit you best.

All the analytical tools that are dealt with in the following 14 chapters will indeed
be constantly required in the course of your studies. The majority (99%?) of
the calculations used in the natural sciences are based on them. At the end of
each chapter, there is time for contemplation and putting things into a general
perspective (first work, then play). The character of a training program (lectures
and exercises) has been preserved as far as possible. So one will find references
(at unexpected places) in the text to the home exercises contained in part IV
that now can — and must — be mastered. They demarcate the material for
a week. If this material seems unduly large, it is because the book goes beyond
the scope of the lecture course.

The exercises are small research projects. They are to be worked out individually
and unassisted. The moment of truth will come in Part IV. Please: Don’t ever
complain that it took “15 hours” to solve a particular problem. It will only
prompt a wry smile and comments such as: “Was the radio playing ?”, “Oh yes,
my last problem took 150 hours and a sleepless night” or “Then you just still
needed to spend 15 hours on it”. And, without quotation marks: no time spent
on exercises is ever wasted. They are your course.

Good luck !

I am very grateful to Dr. A. Ziegler (APL in Osnabrück/Germany) and to
A. A. Ludl (PhD in Paris). A. Ziegler translated Preface, Contents, section 1.1
and chapter 9, chapters 15 and 16 were translated by A.A. Ludl. Since the
remaining 280 pages were compiled by myself, they could contain one or the
other unusualness in English usage. If so, I apologize for that.

Thankfully, Marina Forlizzi and Neil Ashby detected and corrected various errors
throughout the main text.

I also wish to thank Klaus Horn (Verlag Europa–Lehrmittel) for his unhesitant
assistance during the production of the book.

Hannover, September 2015 Hermann Schulz
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1 Vectors

First steps are easy. Whenever we want to describe some process of nature
(describe only : no physics yet), we will soon be forced to specify directions. Sign-
posts come to mind — we need arrows. An everyday example demonstrates
how much we need them.

We are standing at the corner of a soccer field. I am pointing in a certain
direction towards the ball (more precisely : towards its center). My pal standing
next to me sees the ball too, but he looks in a slightly different direction. The
ball is moving in yet another direction. It is also spinning; its instantaneous
spin axis has a direction as well. In addition the ball is attracted by the Earth;
it feels a downward force, i. e. towards the center of the Earth. Wind is blowing
from direction . . . . . . Raindrops are falling in direction . . . . . . At any moment
the curved path of the ball’s center lies in a plane that can be characterized by
its (orthogonal) direction. A floodlight (which we see in direction . . .) sends its
rays in direction . . . towards the ball. The ball looks shiny. Hence, there are
light rays coming from a spot on its surface towards my eye. In such a ray, an
electron of a gas atom experiences an alternating force perpendicular to the ray,
i. e. in the “direction of polarization” of the light wave. And so on.

Figure 1–1 . Three
everyday arrows:
position, velocity, and force�
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⇀
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⇀
F ⇀

v

� � �

Maybe you have noticed here a little human deficiency : My neighbor does not
quite realize where I am pointing. “A crow”, he says. Indeed there was a bird on
the straight line through his nose and my fingernail. If only we were point–like
creatures and could stretch our forefingers as much as we liked. Still we can do
that in our imagination. And we can draw it, too, on a large drawing board.
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2 Chapter 1: Vectors

1.1 Direction and Magnitude

We call an arrow that points from an agreed–upon point of reference, the ori-
gin, to any point of momentary interest within a physical process, a position
vector. As abbreviation we write the letter r with an arrow on top of it. In
hand writing one should use a half arrow ⇀ , i. e.

⇀
r . This is common practice,

efficient, and perfectly adequate. Creatures of habit capable of reasoning will
adopt any minute improvement (whether it be in writing, thinking, speaking or
calculating), and then adhere to it for life.

Figure 1–2 . A displacement
vector and its two position vectors�

�
��

⇀
r1

⇀
r2

⇀
r12

1

2

�
�
�
�
�
�
�
�
�
�
�
�
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������������

An arrow that connects one point with another is called a displacement vec-
tor :

⇀
r12 in Figure 1–2 . Thus, the position vector is a special form of a displa-

cement vector, that always starts at the origin. If (as in Figure 1–1 ) we want
to draw an arrow for velocity too, then we obviously have to specify the scale,
i. e. how many meters per second are to correspond to 1 cm on paper (of the
drawing board). The length of the arrow, translated if necessary into units of
(e. g.) velocity, is called the magnitude of the vector, and is written

|⇀r | = r , |⇀v | = v , |⇀F | = F .

Incidentally, it is not yet necessary at this point to think about units of force.

So an arrow has direction, magnitude, and a starting point. In turn, the latter
has a position vector of its own. We shall say : “At

⇀
r , the ball has velocity

⇀
v”

or “at
⇀
r , the ball is accelerated by force

⇀
F ”. We realize that whatever can be

expressed by one arrow and its starting point, can as well be expressed by two
arrows. Proceeding this way nothing needs to be said about the starting points
of either arrow. From now on we shall exclusively deal with these, endearingly
humble, arrows : only their magnitude and direction have to be given. The point
of this trick will become clearer still if we imagine a flow of water (Figure 1–3 ) :
We can (in any reasonable domain) specify the velocity of an alga (if one happens
to be there) at any position. We write

⇀
v(

⇀
r ) and say “vee of arr”, and “

⇀
r is the

space variable”. Such an arrangement is called a field : the velocity field of the
flow, or perhaps the force field of the Earth.
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1.1 Direction and Magnitude 3

Figure 1–3 . Velocity field and force field
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Maybe it is about time to clarify what a vector is supposed to be :

Preliminary definition

Vectors are arrows with respect to magnitude and
direction, for which it makes physical sense to
multiply them with a number, and to add them up.

(1.1)

This sentence sounds peculiar and too (?) pictorial. Probably it is not precise.
We can’t do it any better yet! The proper definition is given at the end of section
4.1. But let us emphasize one thing now : A physicist’s notion of a vector is
different from a mathematician’s. We place particular emphasis on describing
reality. An arrow can be constructed from wood or wire, and positioned to
the right place by means of a scaffolding. It is still there even when nobody is
looking. Ants crawl over it, and raindrops run along it. Because arrows are real
(and vectors are supposed to be arrows), physicists demand somewhat more :
The components of a vector should change in a certain way on transformation
to a rotated frame of reference.

Figure 1–4 . Several different ways of depicting the same vector

������
������

������

������
������������

������
������

������
������
������
������
������

For the time being we only understand the first line of (1.1). All arrows with
identical magnitudes and directions form the same vector : Figure 1–4 . Or : A
vector is the totality of an infinite number of arrows with the same magnitude
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4 Chapter 1: Vectors

and direction. Thus we can displace an arrow parallel to itself anytime. It
continues to be a representative of the same vector ! In particular we can always
select the arrow that starts at the origin, perhaps in order to measure the vector
components.

Multiplication with a number

What is meant by this is shown in Figure 1–5 . Minus 2.7 times a vector is
another vector, which points in the opposite direction and is 2.7 times as long
as the original one.

Figure 1–5 . Multiplication
of a vector with a number

If we multiply a displacement vector (1 meter long) with 1/(1 second), we get
a velocity vector with magnitude 1 m/s. If we multiply any vector with 1/(its
magnitude), we get a unit vector.

1

a
⇀
a =

⇀
e , |⇀e | = 1 or :

⇀
a = a

⇀
e . (1.2)

The phrase “vector = (its) magnitude times (its) unit vector” is therefore always
correct. People who are very much used to components may need an occasional
reminder (when doing exercises, for instance) that it is always possible to think
along these lines as well.

When we do physics and write a number without something following it (e. g.
1) this is usually wrong. “one of what ?? — one apple ? one meter ? one
second ?” Most variables have a dimension, i. e. they are “a length” or “a
time” etc. A unit vector however has indeed magnitude 1 (without anything
after it), and 1.7 times

⇀
e has magnitude 1.7. The agreement, common amongst

mathematicians, to translate meters into numbers without a dimension, is found
here too. Incidentally the author is incapable of drawing a unit circle. Can you
do it ? We always end up with a circle having a radius in centimeters. But to
specify a translation rule — this is possible.

Addition of two vectors

We demonstrate this using Figure 1–2 .
⇀
r1 plus

⇀
r12 is a vector as well, namely

⇀
r2. Hence, every displacement vector can be rewritten in the form

⇀
r12 =

⇀
r2−⇀

r1
with the position vectors of the finishing and starting points. This definition
can immediately be extended to any two vectors as long as they have the same
dimension (i. e. they may be drawn on the same drawing board, with a specified

translation rule) : Place
⇀

b at the finishing point of
⇀
a, and then

⇀
a +

⇀

b is the

vector from the starting point of
⇀
a to the finishing point of

⇀

b . Figure 1–6
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1.1 Direction and Magnitude 5

demonstrates that the order of the two vectors does not matter :
⇀
a+

⇀

b =
⇀

b +
⇀
a.

If the addition of a set of vectors leads us back to the starting point, then the
result has magnitude zero : this is the null vector.

Figure 1–6 . Addition of
vectors, and how the null
vector can result from it

We now understand (1.1) completely as far as displacement vectors are concer-
ned. Only the term “physical sense” is still a bit grandiose. It is a different
matter if we now ask whether velocities or forces are vectors in the sense of
(1.1).

Are velocities vectors ?

It makes sense to multiply them with a number. Figure 1–7 shows what is meant
by adding a velocity

⇀
v (an ant relative to a conveyor belt) to another velocity

⇀
u (the belt). Does forming

⇀
u +

⇀
v , as described geometrically above, yield the

correct total velocity
⇀
w ? The answer is “Yes”. Consider a specific time interval

Figure 1–7 . How
velocities are added

Δt. Let
⇀
r1 and

⇀
r2 be the ant’s positions at the start and the finish of this time

interval, respectively. It is obvious that the ant can also reach
⇀
r2 if it first sits

still during Δt, thereby reaching
⇀
r3, and then walks to

⇀
r2 in Δt on a stationary

belt :
⇀
r12 =

⇀
r13 +

⇀
r32. We divide this equation by Δt and get

⇀
w =

⇀
u +

⇀
v . Thus

it does indeed make physical sense to add velocities geometrically. Velocities are
vectors.
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Are forces vectors ?

We tie two strings to a spring balance (Figure 1–8 ) and pull one string with
⇀
F and the other with

⇀
K . If we were to only pull one instead, with

⇀
F +

⇀
K , the

spring balance would show the same reading and point in the same direction.
We should not consider this fact a matter of course. It is a statement about
Nature. Experimental result : Forces are vectors.

Figure 1–8 . How forces are
added

The hook is at rest; not only are the forces
⇀
K and

⇀
F pulling on it but so too is

the spring itself, namely with a force −(⇀K +
⇀
F ) . The sum of the forces is zero.

The converse is also true, and quite generally : if a point is at rest, then it is not

accelerating : Sum of forces = Mass times no acceleration =
⇀

0 .

Are rotations vectors ?

Take the book lying in front of you and rotate it until it is lying crossways. You
have rotated it around an axis perpendicular to the table, through a right angle.
Point the thumb of your right hand upwards. The other (hand clenched) fingers
will automatically indicate the sense of rotation (right–handed here). Thus a
rotation (length = angle) may be characterized by an arrow. Now perform
two rotations in series, first as in the left hand side of Figure 1–9 , then as in
the right hand side. The two orientations the book ends with are different.
This experiment should actually be carried out with the very book from whose
chapter 1 it is taken, i. e. [Berkeley , 1]. It is listed in the Bibliography. Thus
finite rotations are not vectors. Definition (1.1) — what it includes, and what
it excludes — is now clear.

Figure 1–9 . Finite rotations are not
vectors

Components

So far we could understand and formulate relationships without referring to
coordinate axes (the edges of the soccer field, the flag pole). This fills us with


